Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Dig Dis Sci ; 67(10): 4805-4812, 2022 10.
Article in English | MEDLINE | ID: mdl-35084606

ABSTRACT

BACKGROUND AND AIMS: Endoscopic surveillance of Barrett's esophagus (BE) by white light examination is insufficient to diagnose dysplastic change. In this work, we describe an optical imaging method to obtain high-resolution cross-sectional imaging using a paddle-shaped probe affixed to the endoscope tip. METHODS: We integrated Optical Coherence Tomography (OCT), an optical imaging method that produces cross-sectional images, into a paddle probe attached to video endoscope. We acquired images of esophageal epithelium from patients undergoing routine upper GI endoscopy. Images were classified by a reviewer blinded to patient identity and condition, and these results were compared with clinical diagnosis. RESULTS: We successfully captured epithelial OCT images from 30 patients and identified features consistent with both squamous epithelium and Barrett's esophagus. Our blinded image reviewer classified BE versus non-BE with 91.5% accuracy (65/71 image regions), including sensitivity of 84.6% for BE (11/13) and a specificity of 93.1% (54/58). However, in 16 patients, intubation of the probe into the esophagus could not be achieved. CONCLUSIONS: A paddle probe is a feasible imaging format for acquiring cross-sectional OCT images from the esophagus and can provide a structural assessment of BE and non-BE tissue. Probe form factor is the current limiting obstacle, but could be addressed by further miniaturization.


Subject(s)
Barrett Esophagus , Esophageal Neoplasms , Barrett Esophagus/diagnostic imaging , Endoscopes , Endoscopy, Digestive System , Esophagoscopy/methods , Humans , Tomography, Optical Coherence/methods
2.
Biomed Opt Express ; 12(12): 7689-7702, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-35003860

ABSTRACT

For many clinical applications, such as dermatology, optical coherence tomography (OCT) suffers from limited penetration depth due primarily to the highly scattering nature of biological tissues. Here, we present a novel implementation of dual-axis optical coherence tomography (DA-OCT) that offers improved depth penetration in skin imaging at 1.3 µm compared to conventional OCT. Several unique aspects of DA-OCT are examined here, including the requirements for scattering properties to realize the improvement and the limited depth of focus (DOF) inherent to the technique. To overcome this limitation, our approach uses a tunable lens to coordinate focal plane selection with image acquisition to create an enhanced DOF for DA-OCT. This improvement in penetration depth is quantified experimentally against conventional on-axis OCT using tissue phantoms and mouse skin. The results presented here suggest the potential use of DA-OCT in situations where a high degree of scattering limits depth penetration in OCT imaging.

3.
Microsyst Nanoeng ; 5: 63, 2019.
Article in English | MEDLINE | ID: mdl-31814994

ABSTRACT

Changes in the deformability of red blood cells can reveal a range of pathologies. For example, cells which have been stored for transfusion are known to exhibit progressively impaired deformability. Thus, this aspect of red blood cells has been characterized previously using a range of techniques. In this paper, we show a novel approach for examining the biophysical response of the cells with quantitative phase imaging. Specifically, optical volume changes are observed as the cells transit restrictive channels of a microfluidic chip in a high refractive index medium. The optical volume changes indicate an increase of cell's internal density, ostensibly due to water displacement. Here, we characterize these changes over time for red blood cells from two subjects. By storage day 29, a significant decrease in the magnitude of optical volume change in response to mechanical stress was witnessed. The exchange of water with the environment due to mechanical stress is seen to modulate with storage time, suggesting a potential means for studying cell storage.

4.
Transl Vis Sci Technol ; 8(3): 61, 2019 May.
Article in English | MEDLINE | ID: mdl-31293815

ABSTRACT

PURPOSE: We present the design of a new low-cost optical coherence tomography (OCT) system and compare its retinal imaging capabilities to a standard commercial system through a clinical study. METHODS: A spectral-domain OCT system was designed using various cost-reduction techniques to be low-cost, highly portable, and completely stand-alone. Clinical imaging was performed on 120 eyes of 60 patients (60 eyes of normal volunteers and 60 eyes with retinal disease) using both the low-cost OCT and a Heidelberg Engineering Spectralis OCT. Contrast-to-noise ratio (CNR) was measured from resulting images to determine system performance. RESULTS: The low-cost OCT system was successfully applied to clinical imaging of the retina. The system offers an axial resolution of 8.0 µm, a lateral resolution of 19.6 µm, and an imaging depth of 2.7 mm for a 6.6-mm field of view in the X and Y directions. Total cost is $5037, a significant size reduction compared to current commercial higher performance systems. Mean CNR value of low-cost OCT images is only 5.6% lower compared to the Heidelberg Spectralis. CONCLUSIONS: The images captured with the low-cost OCT were of adequate resolution and allowed for clinical diagnostics. It offers comparable performance as a retinal screening tool at a fraction of the cost of current commercial systems. TRANSLATIONAL RELEVANCE: Low-cost OCT has the potential to increase access to retinal imaging.

5.
Biomed Opt Express ; 9(2): 616-622, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29552398

ABSTRACT

Speckle is an intrinsic noise of interferometric signals which reduces contrast and degrades the quality of optical coherence tomography (OCT) images. Here, we present a frequency compounding speckle reduction technique using the dual window (DW) method. Using the DW method, speckle noise is reduced without the need to acquire multiple frames. A ~25% improvement in the contrast-to-noise ratio (CNR) was achieved using the DW speckle reduction method with only minimal loss (~17%) in axial resolution. We also demonstrate that real-time speckle reduction can be achieved at a B-scan rate of ~21 frames per second using a graphic processing unit (GPU). The DW speckle reduction technique can work on any existing OCT instrument without further system modification or extra components. This makes it applicable both in real-time imaging systems and during post-processing.

6.
Biomed Opt Express ; 9(3): 1232-1243, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29541516

ABSTRACT

Optical coherence tomography (OCT) is a widely used biomedical imaging tool, primarily in ophthalmology to diagnose and stage retinal diseases. In order to increase access for a wider range of applications and in low resource settings, we developed a portable, low-cost OCT system that has comparable imaging performance to commercially available systems. Here, we present the system design and characterization and compare the system performance to other commercially available OCT systems. In addition, future cost reductions and potential additional applications of the low-cost OCT system are discussed.

7.
Appl Opt ; 57(6): 1455-1462, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29469848

ABSTRACT

Use of imaging fiber bundles for coherence-domain imaging has remained limited to date. In this work, we provide characterization of commercially available imaging bundles for coherence-domain imaging, by evaluating their modal structure for applicability to interferometric imaging. We further examine custom fabricated bundles developed in collaboration with a corporate partner for their ability to reduce interelement optical path length variability and cross talk between elements. The results presented here will serve as a useful guide for comparing fiber bundles for coherence imaging while also offering an improved understanding of the functionality and limitations of imaging bundles for advancing coherent imaging technologies.

8.
Opt Lett ; 42(12): 2302-2305, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28614337

ABSTRACT

We have developed dual-axis optical coherence tomography (DA-OCT) which enables deep tissue imaging by using a novel off-axis illumination/detection configuration. DA-OCT offers a 100-fold speed increase compared with its predecessor, multispectral multiple-scattering low coherence interferometry (ms2/LCI), by using a new beam scanning mechanism based on a microelectro-mechanical system (MEMS) mirror. The data acquisition scheme was altered to take advantage of this scanning speed, producing tomographic images at a rate of 4 frames (B-scans) per second. DA-OCT differs from ms2/LCI in that the dual axes intersect at a shallower depth (∼1 mm). This difference, coupled with the faster scanning speed, shifts the detection priority from multiply scattered to ballistic light. The utility of this approach was demonstrated by imaging both ex vivo porcine ear skin and in vivo rat skin from a McFarlane flap model. The enhanced penetration depth provided by the DA-OCT system will be beneficial to various clinical applications in dermatology and surgery.


Subject(s)
Skin , Tomography, Optical Coherence/methods , Animals , Interferometry , Light , Lighting , Rats , Surgical Flaps , Swine
9.
Biomed Opt Express ; 7(4): 1400-14, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27446664

ABSTRACT

Angle-resolved low coherence interferometry (a/LCI) is an optical technique used to measure nuclear morphology in situ. However, a/LCI is not an imaging modality and can produce ambiguous results when the measurements are not properly oriented to the tissue architecture. Here we present a 2D a/LCI system which incorporates optical coherence tomography imaging to guide the measurements. System design and characterization are presented, along with example cases which demonstrate the utility of the combined measurements. In addition, future development and applications of this dual modality approach are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...