Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 11(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35205141

ABSTRACT

Breeding crops in a conventional way demands considerable time, space, inputs for selection, and the subsequent crossing of desirable plants. The duration of the seed-to-seed cycle is one of the crucial bottlenecks in the progress of plant research and breeding. In this context, speed breeding (SB), relying mainly on photoperiod extension, temperature control, and early seed harvest, has the potential to accelerate the rate of plant improvement. Well demonstrated in the case of long-day plants, the SB protocols are being extended to short-day plants to reduce the generation interval time. Flexibility in SB protocols allows them to align and integrate with diverse research purposes including population development, genomic selection, phenotyping, and genomic editing. In this review, we discuss the different SB methodologies and their application to hasten future plant improvement. Though SB has been extensively used in plant phenotyping and the pyramiding of multiple traits for the development of new crop varieties, certain challenges and limitations hamper its widespread application across diverse crops. However, the existing constraints can be resolved by further optimization of the SB protocols for critical food crops and their efficient integration in plant breeding pipelines.

2.
Trends Genet ; 37(12): 1124-1136, 2021 12.
Article in English | MEDLINE | ID: mdl-34531040

ABSTRACT

Crop production systems need to expand their outputs sustainably to feed a burgeoning human population. Advances in genome sequencing technologies combined with efficient trait mapping procedures accelerate the availability of beneficial alleles for breeding and research. Enhanced interoperability between different omics and phenotyping platforms, leveraged by evolving machine learning tools, will help provide mechanistic explanations for complex plant traits. Targeted and rapid assembly of beneficial alleles using optimized breeding strategies and precise genome editing techniques could deliver ideal crops for the future. Realizing desired productivity gains in the field is imperative for securing an adequate future food supply for 10 billion people.


Subject(s)
Genome, Plant , Plant Breeding , Crops, Agricultural/genetics , Gene Editing/methods , Genome, Plant/genetics , Humans , Phenotype , Plant Breeding/methods
3.
Theor Appl Genet ; 134(10): 3411-3426, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34258645

ABSTRACT

KEY MESSAGE: A plant-specific Trimethylguanosine Synthase1-like homologue was identified as a candidate gene for the efl mutation in narrow-leafed lupin, which alters phenology by reducing vernalisation requirement. The vernalisation pathway is a key component of flowering time control in plants from temperate regions but is not well understood in the legume family. Here we examined vernalisation control in the temperate grain legume species, narrow-leafed lupin (Lupinus angustifolius L.), and discovered a candidate gene for an ethylene imine mutation (efl). The efl mutation changes phenology from late to mid-season flowering and additionally causes transformation from obligate to facultative vernalisation requirement. The efl locus was mapped to pseudochromosome NLL-10 in a recombinant inbred line (RIL) mapping population developed by accelerated single seed descent. Candidate genes were identified in the reference genome, and a diverse panel of narrow-leafed lupins was screened to validate mutations specific to accessions with efl. A non-synonymous SNP mutation within an S-adenosyl-L-methionine-dependent methyltransferase protein domain of a Trimethylguanosine Synthase1-like (TGS1) orthologue was identified as the candidate mutation giving rise to efl. This mutation caused substitution of an amino acid within an established motif at a position that is otherwise highly conserved in several plant families and was perfectly correlated with the efl phenotype in F2 and F6 genetic population and a panel of diverse accessions, including the original efl mutant. Expression of the TGS1 homologue did not differ between wild-type and efl genotypes, supporting altered functional activity of the gene product. This is the first time a TGS1 orthologue has been associated with vernalisation response and flowering time control in any plant species.


Subject(s)
Flowers/growth & development , Gene Expression Regulation, Plant , Genetics, Population , Lupinus/growth & development , Methyltransferases/metabolism , Plant Leaves/growth & development , Plant Proteins/metabolism , Flowers/genetics , Lupinus/genetics , Methyltransferases/genetics , Mutation , Phenotype , Phylogeny , Plant Leaves/genetics , Plant Proteins/genetics
4.
Mol Breed ; 41(12): 78, 2021 Dec.
Article in English | MEDLINE | ID: mdl-37309516

ABSTRACT

The root-lesion nematode Pratylenchus thornei Sher & Allen, 1953 is a damaging parasite of many crop plants, including the grain legume chickpea (Cicer arietinum L.). Within cultivated chickpea, there are no known sources of strong resistance to P. thornei, but some cultivars have partial resistance. In the research reported here, the genetic basis for differences in P. thornei resistance was analysed using a population derived by accelerated single seed descent from a cross between a partially resistant cultivar, PBA HatTrick, and a very susceptible cultivar, Kyabra. A genetic linkage map was constructed from genotyping-by-sequencing data. Two quantitative trait loci were mapped, one on the Ca4 chromosome and one on the Ca7 chromosome. The Ca7 locus had a greater and more consistent effect than the Ca4 locus. Marker assays designed for single nucleotide polymorphisms on Ca7 were applied to a panel of chickpea accessions. Some of these markers should be useful for marker-assisted selection in chickpea breeding. Haplotype analysis confirmed the Iranian landrace ICC14903 to be the source of the resistance allele in PBA HatTrick and indicated that other Australian cultivars inherited the same allele from other Iranian landraces. A candidate region was defined on the Ca7 pseudomolecule. Within that region, 69 genes have been predicted with high confidence. Among these, two have annotations related to biotic stress response. Three others have previously been reported to be expressed in roots of PBA HatTrick and Kyabra, including one that is more highly expressed in PBA HatTrick than in Kyabra. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01271-8.

5.
Front Plant Sci ; 10: 1154, 2019.
Article in English | MEDLINE | ID: mdl-31611890

ABSTRACT

Protocols have been proposed for rapid generation turnover of temperate legumes under conditions optimized for day-length, temperature, and light spectra. These conditions act to compress time to flowering and seed development across genotypes. In pea, we have previously demonstrated that embryos do not efficiently germinate without exogenous hormones until physiological maturity is reached at 18 days after pollination (DAP). Sugar metabolism and moisture content have been implicated in the modulation of embryo maturity. However, the role of hormones in regulating seed development is poorly described in legumes. To address this gap, we characterized hormonal profiles (IAA, chlorinated auxin [4-Cl-IAA], GA20, GA1, and abscisic acid [ABA]) of developing seeds (10-22 DAP) from diverse pea genotypes grown under intensive conditions optimized for rapid generation turnover and compared them to profiles of equivalent samples from glasshouse conditions. Growing plants under intensive conditions altered the seed hormone content by advancing the auxin, gibberellins (GAs) and ABA profiles by 4 to 8 days, compared with the glasshouse control. Additionally, we observed a synchronization of the auxin profiles across genotypes. Under intensive conditions, auxin peaks were observed at 10 to 12 DAP and GA20 peaks at 10 to 16 DAP, indicative of the end of embryo morphogenesis and initiation of seed desiccation. GA1 was detected only in seeds harvested in the glasshouse. These results were associated with an acceleration of embryo physiological maturity by up to 4 days in the intensive environment. We propose auxin and GA profiles as reliable indicators of seed maturation. The biological relevance of these hormonal fluctuations to the attainment of physiological maturity, in particular the role of ABA and GA, was investigated through the study of precocious in vitro germination of seeds 12 to 22 DAP, with and without exogenous hormones. The extent of sensitivity of developing seeds to exogenous ABA was strongly genotype-dependent. Concentrations between 5 and 10 µM inhibited germination of seeds 18 DAP. Germination of seeds 12 DAP was enhanced 2.5- to 3-fold with the addition of 125 µM GA3. This study provides further insights into the hormonal regulation of seed development and in vitro precocious germination in legumes and contributes to the design of efficient and reproducible biotechnological tools for rapid genetic gain.

6.
Plant Dis ; 103(11): 2884-2892, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31486740

ABSTRACT

Sclerotinia sclerotiorum and Leptosphaeria maculans are two of the most important pathogens of many cruciferous crops. The reaction of 30 genotypes of Camelina sativa (false flax) was determined against both pathogens. C. sativa genotypes were inoculated at seedling and adult stages with two pathotypes of S. sclerotiorum, highly virulent MBRS-1 and less virulent WW-1. There were significant differences (P < 0.001) among genotypes, between pathotypes, and a significant interaction between genotypes and pathotypes in relation to percent cotyledon disease index (% CDI) and stem lesion length. Genotypes 370 (% CDI 20.5, stem lesion length 1.8 cm) and 253 (% CDI 24.8, stem lesion length 1.4 cm) not only consistently exhibited cotyledon and stem resistance, in contrast to susceptible genotype 2305 (% CDI 37.7, stem lesion length 7.2 cm), but their resistance was independent to S. sclerotiorum pathotype. A F5-recombinant inbred line population was developed from genotypes 370 × 2305 and responses characterized. Low broad-sense heritability indicated a complex pattern of inheritance of resistance to S. sclerotiorum. Six isolates of L. maculans, covering combinations of five different avirulent loci (i.e., five different races), were tested on C. sativa cotyledons across two experiments. There was a high level of resistance, with % CDI < 17, and including development of a hypersensitive reaction. This is the first report of variable reaction of C. sativa to different races of L. maculans and the first demonstrating comparative reactions of C. sativa to S. sclerotiorum and L. maculans. This study not only provides new understanding of these comparative resistances in C. sativa, but highlights their potential as new sources of resistance, both for crucifer disease-resistance breeding in general and to enable broader adoption of C. sativa as a more sustainable oilseed crop in its own right.


Subject(s)
Ascomycota , Brassicaceae , Disease Resistance , Ascomycota/physiology , Brassicaceae/genetics , Brassicaceae/microbiology , Disease Resistance/genetics , Genotype , Plant Breeding
7.
Plant Methods ; 13: 70, 2017.
Article in English | MEDLINE | ID: mdl-28855957

ABSTRACT

BACKGROUND: Boron (B) tolerance has been identified as a key target for field pea improvement. Screening for B tolerance in the field is problematic due to variability in space and time, and robust B molecular markers are currently unavailable in field pea. There has been recent progress in developing protocols that can accelerate the life cycle of plants to enable rapid generation turnover in single seed descent breeding programs. A robust B screening protocol that can be fully integrated within an accelerated single seed descent system could lead to rapid identification and introgression of B tolerance into field pea genotypes. Integration with an accelerated single seed descent system requires: (1) screening under artificially lit, temperature-controlled conditions; (2) capacity to use immature precociously germinated seed (PGS); (3) recovery of lines without significant time penalty; and (4) good correlation with results from established screening protocols. RESULTS: We present herein a B toxicity screening system for field pea based on hydroponic growth of PGS in a light and temperature controlled environment that allows recovery of seedlings for rapid seed production. Screening results were compared to traditional methods for B tolerance screening in B-laced soil and with published field tolerance ratings. B tolerance was scored 17 days after sowing using leaf symptoms as a metric. Plants were then transferred to soil with maximum of six days delay in flowering compared to a typical accelerated single seed descent system generation. The use of PGS had minimal impact on B tolerance rankings compared to plants grown from mature seed. The leaf tolerance rankings from hydroponic-grown plants correlated well with those from soil-grown plants, and consistently identified the most tolerant genotypes. CONCLUSIONS: Our 17 day screening protocol represents a major time-saving over previously published B screening protocols for field pea, thereby extending the application of the protocol to traditional single seed descent systems or RIL screening. We anticipate that small modifications to the proposed technique will make it applicable to screen for other individual abiotic stresses, or allow studies of the interactions between B tolerance and stresses such as salinity.

8.
Plant Dis ; 99(11): 1544-1549, 2015 Nov.
Article in English | MEDLINE | ID: mdl-30695949

ABSTRACT

Camelina sativa (L.) Crantz. has been proposed as a novel source of oilseed resistance to Sclerotinia rot (SR; causal agent Sclerotinia sclerotiorum (Lib.) de Bary). To assess factors likely important in determining the level of resistance to this pathogen, 30 diverse C. sativa genotypes were evaluated using a cotyledon test under controlled environmental conditions. Confirmed cotyledon SR-resistant (CS370) and SR-susceptible (CS2305) genotypes were assessed for camalexin production across time following inoculation at the 1-month vegetative stage of growth. There were significant differences among C. sativa genotypes in response to inoculation with S. sclerotiorum in terms of percent cotyledon disease index (%CDI), with the mean %CDI ranging from 30.9 to 69.4% across germplasm and confirmation screening, respectively. Genotype CS370 consistently showed low %CDI indicating high level of resistance to S. sclerotiorum, whereas CS2305 showed the highest %CDI value. These findings highlight the potential to develop highly SR-resistant cultivars of C. sativa by selection. Furthermore, liquid chromatographic analysis of leaves for both SR-resistant and SR-susceptible genotypes demonstrated that camalexin was produced when inoculated with S. sclerotiorum. However, camalexin production was not linked with disease severity in either genotype, indicating that SR resistance in C. sativa is independent of the level of camalexin production.

SELECTION OF CITATIONS
SEARCH DETAIL
...