Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Nature ; 627(8005): 778-782, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38538939

ABSTRACT

The accumulation of physical errors1-3 prevents the execution of large-scale algorithms in current quantum computers. Quantum error correction4 promises a solution by encoding k logical qubits onto a larger number n of physical qubits, such that the physical errors are suppressed enough to allow running a desired computation with tolerable fidelity. Quantum error correction becomes practically realizable once the physical error rate is below a threshold value that depends on the choice of quantum code, syndrome measurement circuit and decoding algorithm5. We present an end-to-end quantum error correction protocol that implements fault-tolerant memory on the basis of a family of low-density parity-check codes6. Our approach achieves an error threshold of 0.7% for the standard circuit-based noise model, on par with the surface code7-10 that for 20 years was the leading code in terms of error threshold. The syndrome measurement cycle for a length-n code in our family requires n ancillary qubits and a depth-8 circuit with CNOT gates, qubit initializations and measurements. The required qubit connectivity is a degree-6 graph composed of two edge-disjoint planar subgraphs. In particular, we show that 12 logical qubits can be preserved for nearly 1 million syndrome cycles using 288 physical qubits in total, assuming the physical error rate of 0.1%, whereas the surface code would require nearly 3,000 physical qubits to achieve said performance. Our findings bring demonstrations of a low-overhead fault-tolerant quantum memory within the reach of near-term quantum processors.

2.
Arch Gerontol Geriatr ; 122: 105376, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38412791

ABSTRACT

BACKGROUND: The immune system comprises many different types of cells, each with different functions and properties during immune defence. The numbers and types of immune cells in the circulation is highly dynamic and regulated by infections, ageing and certain types of cancers. It is recognised that immune function decreases during ageing, but the biological age at which these functional changes occur is variable, and how ageing affects the different sub-types of lymphocytes, monocytes and NK cells in the circulation is not fully defined. METHODS: In this study, we recruited 24 healthy volunteers over the age range of 23y to 89y and measured the numbers of different subclasses of circulating cells by immuno-phenotyping and flow cytometry. RESULTS: We show increased monocyte:lymphocyte ratios in a > 50y cohort and most T cell subsets were decreased, except for CD4+ cells, which were increased in this cohort. In addition, there was NK cell expansion and increased HLA-DR+ T cells, but decreased numbers of classical monocytes and increased numbers of CD4+ monocytes in this >50y cohort. CONCLUSIONS: These data indicate that healthy ageing is associated with changes in both the major cell groups but also individual subclasses of cells, and these are likely to result from continuous immune challenge and impaired development.


Subject(s)
Aging , Flow Cytometry , Killer Cells, Natural , Monocytes , Humans , Male , Middle Aged , Aged , Killer Cells, Natural/immunology , Female , Monocytes/immunology , Aging/immunology , Aging/physiology , Adult , Aged, 80 and over , Young Adult , Healthy Volunteers , Immunophenotyping
3.
Diabetologia ; 67(6): 1114-1121, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38413436

ABSTRACT

AIMS/HYPOTHESIS: The aim of this study was to explore whether diabetic retinopathy is associated with alterations of the circadian system, and to examine the role of reduced intrinsically photosensitive retinal ganglion cell (ipRGC) function. METHODS: Participants with type 2 diabetes, with diabetic retinopathy (n=14) and without diabetic retinopathy (n=9) underwent 24 h blood sampling for melatonin and cortisol under controlled laboratory conditions. ipRGC function was inferred from the post-illumination pupil response (PIPR). Habitual sleep duration, efficiency and variability were assessed by actigraphy. RESULTS: Participants with diabetic retinopathy compared to participants without diabetic retinopathy had smaller PIPR (p=0.007), lower 24 h serum melatonin output (p=0.042) and greater day-to-day sleep variability (p=0.012). By contrast, 24 h cortisol profiles, sleep duration and efficiency were similar in both groups. Six individuals with diabetic retinopathy had no detectable dim-light melatonin onset. PIPR correlated with 24 h mean melatonin levels (r=0.555, p=0.007). CONCLUSIONS/INTERPRETATION: ipRCG dysfunction in diabetic retinopathy is associated with disruptions of the 24 h melatonin rhythm, suggesting circadian dysregulation in diabetic retinopathy.


Subject(s)
Circadian Rhythm , Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Melatonin , Retinal Ganglion Cells , Humans , Melatonin/blood , Melatonin/metabolism , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/blood , Diabetic Retinopathy/physiopathology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Male , Female , Cross-Sectional Studies , Middle Aged , Circadian Rhythm/physiology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Aged , Hydrocortisone/blood , Hydrocortisone/metabolism , Sleep/physiology , Adult
4.
Nature ; 625(7994): 259-263, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38200302

ABSTRACT

To run large-scale algorithms on a quantum computer, error-correcting codes must be able to perform a fundamental set of operations, called logic gates, while isolating the encoded information from noise1-8. We can complete a universal set of logic gates by producing special resources called magic states9-11. It is therefore important to produce high-fidelity magic states to conduct algorithms while introducing a minimal amount of noise to the computation. Here we propose and implement a scheme to prepare a magic state on a superconducting qubit array using error correction. We find that our scheme produces better magic states than those that can be prepared using the individual qubits of the device. This demonstrates a fundamental principle of fault-tolerant quantum computing12, namely, that we can use error correction to improve the quality of logic gates with noisy qubits. Moreover, we show that the yield of magic states can be increased using adaptive circuits, in which the circuit elements are changed depending on the outcome of mid-circuit measurements. This demonstrates an essential capability needed for many error-correction subroutines. We believe that our prototype will be invaluable in the future as it can reduce the number of physical qubits needed to produce high-fidelity magic states in large-scale quantum-computing architectures.

5.
Nat Commun ; 14(1): 2852, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37202409

ABSTRACT

Quantum error correction offers a promising path for performing high fidelity quantum computations. Although fully fault-tolerant executions of algorithms remain unrealized, recent improvements in control electronics and quantum hardware enable increasingly advanced demonstrations of the necessary operations for error correction. Here, we perform quantum error correction on superconducting qubits connected in a heavy-hexagon lattice. We encode a logical qubit with distance three and perform several rounds of fault-tolerant syndrome measurements that allow for the correction of any single fault in the circuitry. Using real-time feedback, we reset syndrome and flag qubits conditionally after each syndrome extraction cycle. We report decoder dependent logical error, with average logical error per syndrome measurement in Z(X)-basis of ~0.040 (~0.088) and ~0.037 (~0.087) for matching and maximum likelihood decoders, respectively, on leakage post-selected data.

6.
Med ; 4(3): 191-215.e9, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36863347

ABSTRACT

BACKGROUND: Both infection and vaccination, alone or in combination, generate antibody and T cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the maintenance of such responses-and hence protection from disease-requires careful characterization. In a large prospective study of UK healthcare workers (HCWs) (Protective Immunity from T Cells in Healthcare Workers [PITCH], within the larger SARS-CoV-2 Immunity and Reinfection Evaluation [SIREN] study), we previously observed that prior infection strongly affected subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. METHODS: Here, we report longer follow-up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZD1222 (Oxford/AstraZeneca) vaccination and up to 6 months following a subsequent mRNA booster vaccination. FINDINGS: We make three observations: first, the dynamics of humoral and cellular responses differ; binding and neutralizing antibodies declined, whereas T and memory B cell responses were maintained after the second vaccine dose. Second, vaccine boosting restored immunoglobulin (Ig) G levels; broadened neutralizing activity against variants of concern, including Omicron BA.1, BA.2, and BA.5; and boosted T cell responses above the 6-month level after dose 2. Third, prior infection maintained its impact driving larger and broader T cell responses compared with never-infected people, a feature maintained until 6 months after the third dose. CONCLUSIONS: Broadly cross-reactive T cell responses are well maintained over time-especially in those with combined vaccine and infection-induced immunity ("hybrid" immunity)-and may contribute to continued protection against severe disease. FUNDING: Department for Health and Social Care, Medical Research Council.


Subject(s)
COVID-19 , Vaccines , Humans , COVID-19 Vaccines , BNT162 Vaccine , ChAdOx1 nCoV-19 , Prospective Studies , SARS-CoV-2 , Antibodies, Neutralizing , Health Personnel , Immunity, Humoral
7.
Orthopedics ; 46(3): 185-191, 2023 May.
Article in English | MEDLINE | ID: mdl-36719421

ABSTRACT

This retrospective cohort study analyzed the short-term outcomes of patients undergoing total knee arthroplasty receiving periarticular anesthetic injections (PAIs) with and without continuous adductor canal blocks (CACBs) regarding early postoperative narcotic use, pain scores, and range of motion with otherwise similar postoperative regimens. Two hundred ninety-four patients were included: 120 received PAIs with CACBs, and 174 received PAIs only. Matched analysis was performed for type of anesthesia. There were substantial decreases in early inpatient narcotic use with the addition of CACBs to PAIs with general and spinal anesthesia without an adverse effect on pain, knee range of motion, or length of stay. [Orthopedics. 2023;46(3):185-191.].


Subject(s)
Arthroplasty, Replacement, Knee , Nerve Block , Humans , Arthroplasty, Replacement, Knee/adverse effects , Anesthetics, Local/therapeutic use , Pain, Postoperative/etiology , Pain, Postoperative/prevention & control , Retrospective Studies , Nerve Block/adverse effects , Analgesics, Opioid/therapeutic use , Pain Measurement , Injections, Intra-Articular
8.
Rheumatology (Oxford) ; 62(9): 3025-3034, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36617171

ABSTRACT

OBJECTIVES: Identifying that dysfunction of the IL-23/17 axis underlies PsA has led to the development of effective targeted therapies such as the IL-17A inhibitor secukinumab. As IL-17A stimulates the secretion of neutrophil chemoattractants, such as CXCL8 (IL-8), we examined the effect of secukinumab on neutrophil function in PsA. METHODS: Nineteen patients with active PsA were treated with secukinumab. Clinical response [PsA Response Criteria (PsARC) and Psoriasis Area and Severity Index (PASI)] and peripheral blood neutrophil function (apoptosis, receptor expression, phagocytosis/killing, chemotaxis and RNA expression) were measured at 12 week intervals for 48 weeks and compared with age- and sex-matched healthy controls. RESULTS: At 12 weeks, 12/16 (75%) patients had a PsARC response (100% at 36 weeks) and 10/14 (71%) achieved a 90% PASI response. At baseline, there were no differences in PsA neutrophil reactive oxygen species generation, constitutive or cytokine-delayed apoptosis, chemotaxis or phagocytosis of opsonized Staphylococcus aureus compared with healthy controls. Similarly, there were no differences in these functions from baseline to 12 weeks of therapy. However, surface levels of CD11b/CD18 and CD63 increased and expression of CD16 decreased during therapy. In addition, in a subgroup of early (12 week) responders to secukinumab, RNA sequencing revealed transcriptome changes predicting down-regulation of cytokine signalling and chemotaxis pathways and up-regulation of de novo gene expression pathways, including translation initiation, mRNA catabolism and translation. CONCLUSION: Complex changes in the properties of circulating neutrophils occur with secukinumab treatment in PsA that may indicate altered responsiveness to changes in both local and systemic levels of pro-inflammatory cytokines. However, host defence processes of neutrophils were unaltered.


Subject(s)
Arthritis, Psoriatic , Psoriasis , Humans , Arthritis, Psoriatic/drug therapy , Arthritis, Psoriatic/chemically induced , Neutrophils , Interleukin-17 , Antibodies, Monoclonal/therapeutic use , Psoriasis/drug therapy , Treatment Outcome
9.
Metabolites ; 12(7)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35888774

ABSTRACT

Neutrophils play a key role in the pathophysiology of rheumatoid arthritis (RA) where release of ROS and proteases directly causes damage to joints and tissues. Neutrophil function can be modulated by Janus Kinase (JAK) inhibitor drugs, including tofacitinib and baricitinib, which are clinically effective treatments for RA. However, clinical trials have reported increased infection rates and transient neutropenia during therapy. The subtle differences in the mode of action, efficacy and safety of JAK inhibitors have been the primary research topic of many clinical trials and systematic reviews, to provide a more precise and targeted treatment to patients. The aim of this study was to determine both the differences in the metabolome of neutrophils from healthy controls and people with RA, and the effect of different JAK inhibitors on the metabolome of healthy and RA neutrophils. Isolated neutrophils from healthy controls (HC) (n = 6) and people with RA (n = 7) were incubated with baricitinib, tofacitinib or a pan-JAK inhibitor (all 200 ng/mL) for 2 h. Metabolites were extracted, and 1H nuclear magnetic resonance (NMR) was applied to study the metabolic changes. Multivariate analyses and machine learning models showed a divergent metabolic pattern in RA neutrophils compared to HC at 0 h (F1 score = 86.7%) driven by energy metabolites (ATP, ADP, GTP and glucose). No difference was observed in the neutrophil metabolome when treated with JAK inhibitors. However, JAK inhibitors significantly inhibited ROS production and baricitinib decreased NET production (p < 0.05). Bacterial killing was not impaired by JAK inhibitors, indicating that the effect of JAK inhibitors on neutrophils can inhibit joint damage in RA without impairing host defence. This study highlights altered energy metabolism in RA neutrophils which may explain the cause of their dysregulation in inflammatory disease.

10.
Ann Civ Environ Eng ; 6: 1-7, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35547092

ABSTRACT

The purpose of this pilot study was to evaluate the effectiveness of mold sanitation in homes that suffered hurricane-related water damage. After a home is flooded, sanitation of the structure for mold is necessary before the interior of the home can be rebuilt. In this study, homes (n = 6) in Houston, Texas that had been flooded by Hurricane Harvey were sanitized by volunteers. At either 6, 8, 15, 25, 34, or 56 days after the sanitation was completed, a Button™ sampler was used to collect a 48-hour air sample, so that the mold cells in the air could be quantified. Each air sample was then analyzed by quantitative PCR (qPCR) assays for the 36 molds in the Environmental Relative Moldiness Index (ERMI) panel of indicator molds. Quantifying the 36-ERMI molds in air samples results in "ERMI-like" values. The ERMI-like values in the sanitized homes were inversely correlated (Pearson p - value 0.04) with the log of the number of days after the sanitation was completed, an indication that it takes time after sanitation for the mold levels to stabilize. This pilot study demonstrated that the ERMI-like metric was useful in assessing post-sanitation mold levels in previously flooded homes.

11.
Phys Rev Lett ; 128(11): 110504, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35362994

ABSTRACT

Arbitrarily long quantum computations require quantum memories that can be repeatedly measured without being corrupted. Here, we preserve the state of a quantum memory, notably with the additional use of flagged error events. All error events were extracted using fast, midcircuit measurements and resets of the physical qubits. Among the error decoders we considered, we introduce a perfect matching decoder that was calibrated from measurements containing up to size-four correlated events. To compare the decoders, we used a partial postselection scheme shown to retain ten times more data than full postselection. We observed logical errors per round of 2.2±0.1×10^{-2} (decoded without postselection) and 5.1±0.7×10^{-4} (full postselection), which was less than the physical measurement error of 7×10^{-3} and therefore surpasses a pseudothreshold for repeated logical measurements.

12.
BMC Public Health ; 22(1): 588, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35337297

ABSTRACT

BACKGROUND: Antigen testing using lateral flow devices (LFDs) plays an important role in the management of the novel coronavirus pandemic of 2019 (COVID-19) by rapidly identifying individuals who are asymptomatically carrying high levels of the virus. By January 2021, LFD community testing sites were set up across English local authority areas to support the management and containment of regional COVID-19 cases, initially targeting essential workers unable to work from home during the national lockdown. This study aimed to examine the characteristics and motivations of individuals accessing community LFD testing across two local authority areas (LAAs) in the South West of England. METHODS: Data were collected as part of a service evaluation from December 22nd 2020 until March 15th 2021 for two LAAs. Demographic and postcode data were collected from an online test appointment booking platform and the National Health Service testing service online system, with data accessed from Public Health England. An online survey was sent to individuals who made a testing appointment at an LAA1 site using the online booking platform, consisting of 12 questions to collect data on individual's motivations for and experiences of testing. RESULTS: Data were available for individuals who completed 12,516 tests in LAA1 and 12,327 tests in LAA2. Most individuals who engaged with testing were female, working age, white, and worked as early years or education staff, health and social care staff, and supermarket or food production staff. 1249 individuals completed the survey with 60% of respondents reported getting tested for work-related reasons. Individuals first heard about LFD testing through various channels including work, media, and word of mouth, and decided to get tested based on the ease and convenience of testing, workplace communications, and to identify asymptomatic cases to help stop the spread. Most tests were completed by individuals living in less deprived areas based on national deciles of deprivation. CONCLUSIONS: While national and local COVID-19 testing strategies have evolved, community and personal LFD testing remains a crucial pillar of the testing strategy. Future studies should collect quantitative and qualitative data from residents to most effectively shape testing offers based on the needs and preferences of their population.


Subject(s)
COVID-19 , Motivation , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Communicable Disease Control , Female , Humans , State Medicine
13.
Lancet Microbe ; 3(1): e21-e31, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34778853

ABSTRACT

BACKGROUND: Previous infection with SARS-CoV-2 affects the immune response to the first dose of the SARS-CoV-2 vaccine. We aimed to compare SARS-CoV-2-specific T-cell and antibody responses in health-care workers with and without previous SARS-CoV-2 infection following a single dose of the BNT162b2 (tozinameran; Pfizer-BioNTech) mRNA vaccine. METHODS: We sampled health-care workers enrolled in the PITCH study across four hospital sites in the UK (Oxford, Liverpool, Newcastle, and Sheffield). All health-care workers aged 18 years or older consenting to participate in this prospective cohort study were included, with no exclusion criteria applied. Blood samples were collected where possible before vaccination and 28 (±7) days following one or two doses (given 3-4 weeks apart) of the BNT162b2 vaccine. Previous infection was determined by a documented SARS-CoV-2-positive RT-PCR result or the presence of positive anti-SARS-CoV-2 nucleocapsid antibodies. We measured spike-specific IgG antibodies and quantified T-cell responses by interferon-γ enzyme-linked immunospot assay in all participants where samples were available at the time of analysis, comparing SARS-CoV-2-naive individuals to those with previous infection. FINDINGS: Between Dec 9, 2020, and Feb 9, 2021, 119 SARS-CoV-2-naive and 145 previously infected health-care workers received one dose, and 25 SARS-CoV-2-naive health-care workers received two doses, of the BNT162b2 vaccine. In previously infected health-care workers, the median time from previous infection to vaccination was 268 days (IQR 232-285). At 28 days (IQR 27-33) after a single dose, the spike-specific T-cell response measured in fresh peripheral blood mononuclear cells (PBMCs) was higher in previously infected (n=76) than in infection-naive (n=45) health-care workers (median 284 [IQR 150-461] vs 55 [IQR 24-132] spot-forming units [SFUs] per 106 PBMCs; p<0·0001). With cryopreserved PBMCs, the T-cell response in previously infected individuals (n=52) after one vaccine dose was equivalent to that of infection-naive individuals (n=19) after receiving two vaccine doses (median 152 [IQR 119-275] vs 162 [104-258] SFUs/106 PBMCs; p=1·00). Anti-spike IgG antibody responses following a single dose in 142 previously infected health-care workers (median 270 373 [IQR 203 461-535 188] antibody units [AU] per mL) were higher than in 111 infection-naive health-care workers following one dose (35 001 [17 099-55 341] AU/mL; p<0·0001) and higher than in 25 infection-naive individuals given two doses (180 904 [108 221-242 467] AU/mL; p<0·0001). INTERPRETATION: A single dose of the BNT162b2 vaccine is likely to provide greater protection against SARS-CoV-2 infection in individuals with previous SARS-CoV-2 infection, than in SARS-CoV-2-naive individuals, including against variants of concern. Future studies should determine the additional benefit of a second dose on the magnitude and durability of immune responses in individuals vaccinated following infection, alongside evaluation of the impact of extending the interval between vaccine doses. FUNDING: UK Department of Health and Social Care, and UK Coronavirus Immunology Consortium.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Leukocytes, Mononuclear , Prospective Studies , T-Lymphocytes , United Kingdom/epidemiology , Vaccines, Synthetic , mRNA Vaccines
14.
Cell ; 184(23): 5699-5714.e11, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34735795

ABSTRACT

Extension of the interval between vaccine doses for the BNT162b2 mRNA vaccine was introduced in the United Kingdom to accelerate population coverage with a single dose. At this time, trial data were lacking, and we addressed this in a study of United Kingdom healthcare workers. The first vaccine dose induced protection from infection from the circulating alpha (B.1.1.7) variant over several weeks. In a substudy of 589 individuals, we show that this single dose induces severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (NAb) responses and a sustained B and T cell response to the spike protein. NAb levels were higher after the extended dosing interval (6-14 weeks) compared with the conventional 3- to 4-week regimen, accompanied by enrichment of CD4+ T cells expressing interleukin-2 (IL-2). Prior SARS-CoV-2 infection amplified and accelerated the response. These data on dynamic cellular and humoral responses indicate that extension of the dosing interval is an effective immunogenic protocol.


Subject(s)
COVID-19 Vaccines/immunology , Vaccines, Synthetic/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Cross-Priming/immunology , Dose-Response Relationship, Immunologic , Ethnicity , Female , Humans , Immunity , Immunoglobulin G/immunology , Linear Models , Male , Middle Aged , Reference Standards , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Treatment Outcome , Young Adult , mRNA Vaccines
15.
Rev Sci Instrum ; 92(6): 064714, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34243517

ABSTRACT

Gridded electron guns are key components of various electron beam based vacuum tubes. Mesh grids may be utilized for electron beam extraction and control. As part of the electron beam may be intercepted by the mesh grid, heating occurs, which could translate into performance degradation of the vacuum tube or even failure. This paper introduces an analytical model based on first physics principles for mesh grid heating in an electron gun, toward generating the upper bound for the intercepted electron beam power. 3D simulations and exploratory experiments for mesh grid heating in an electron gun directionally confirm the predictions of the analytical model. This analytical approach may be leveraged further when the upper bounds of mesh grid heating in electron guns are needed, as well as for adjusting mesh grid topology to increase its robustness against electron beam heating.

16.
Int J Mol Sci ; 22(14)2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34299030

ABSTRACT

Neutrophil-derived microvesicles (NDMVs) have the potential to exert anti-inflammatory effects. Our study aimed to explore the effects of NDMVs on proinflammatory cytokines expressed by tumor necrosis factor α (TNFα)-stimulated fibroblast-like synoviocytes (FLS). FLS were isolated from the synovium of knee osteoarthritis (OA) patients undergoing surgery. NDMVs, isolated from TNFα-stimulated healthy neutrophils, were characterized by electron microscopy and nanoparticle tracking analysis. MTT and scratch wound healing assays were used to measure FLS viability and migration after treatment with NDMVs, while internalization of fluorescently labeled NDMVs was appraised by flow cytometry and confocal microscopy. Levels of proinflammatory cytokines in supernatants were quantified by the Bio-Plex system. Incubation of FLS with NDMVs at a vesicle/cell ratio of 100 resulted in a time-dependent uptake, with 35% of synoviocytes containing microvesicles over a 6-24 h time period, with no significant change in cell viability. TNFα stimulated the cytokine expression in FLS, and NDMVs down-regulated TNFα-induced expression of IL-5, IL-6, IL-8, MCP-1, IFNγ and MIP-1ß. However, this down-regulation was selective, as NDMVs had no significant effects on TNFα-stimulated expression of IL-2 or IL-4. NDMVs were internalized by FLS to inhibit TNFα-stimulated broad-spectrum proinflammatory cytokine secretion. NDMVs, therefore, may exhibit an anti-inflammatory role in the regulation of the FLS function.


Subject(s)
Cell-Derived Microparticles/metabolism , Fibroblasts/metabolism , Inflammation Mediators/metabolism , Neutrophils/metabolism , Osteoarthritis, Knee/metabolism , Synoviocytes/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Cell-Derived Microparticles/pathology , Cells, Cultured , Fibroblasts/drug effects , Fibroblasts/immunology , Fibroblasts/pathology , Humans , Neutrophils/pathology , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/immunology , Osteoarthritis, Knee/pathology , Synoviocytes/drug effects , Synoviocytes/immunology , Synoviocytes/pathology
17.
Am J Surg ; 217(4): 800-805, 2019 04.
Article in English | MEDLINE | ID: mdl-30093092

ABSTRACT

BACKGROUND: The Advanced Trauma Life Support® (ATLS®) course provides a standard approach to trauma. Participants must pass the ATLS® post-test. We deployed the test online to allow ongoing psychometric item analysis and potential objective refinement. METHODS: A two-phase study was undertaken with the ACS COT permission. In the first phase, ATLS® post-test #2 was computerized and deployed using Qualtrics©. Data were collected from fourteen courses conducted between 2014 and 2015 (n = 306) at one ACS AEI site. In the second phase, the same post-test was administered to 238 trainees in 10 courses via secured computers at four ACS AEI sites in 2016. RESULTS: Phase 1 item analyses showed two items with very low percentages correct, and one of these also showed a low discrimination index. Phase 2 item analyses suggested four items as candidates for review and possible revision. We also found differences by learner background and by instructional site. CONCLUSIONS: This study demonstrates computerized delivery of the ATLS post-test is feasible, promotes psychometric analysis, and could improve the quality of the test. Further collaboration between the ACS COT and ACS AEI would be beneficial.


Subject(s)
Advanced Trauma Life Support Care , Educational Measurement/methods , Psychometrics , Traumatology/education , Accreditation , Female , Humans , Male , United States
19.
Phys Rev Lett ; 119(18): 180501, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29219563

ABSTRACT

Robust quantum computation requires encoding delicate quantum information into degrees of freedom that are hard for the environment to change. Quantum encodings have been demonstrated in many physical systems by observing and correcting storage errors, but applications require not just storing information; we must accurately compute even with faulty operations. The theory of fault-tolerant quantum computing illuminates a way forward by providing a foundation and collection of techniques for limiting the spread of errors. Here we implement one of the smallest quantum codes in a five-qubit superconducting transmon device and demonstrate fault-tolerant state preparation. We characterize the resulting code words through quantum process tomography and study the free evolution of the logical observables. Our results are consistent with fault-tolerant state preparation in a protected qubit subspace.

20.
Phys Rev Lett ; 118(4): 040501, 2017 Jan 27.
Article in English | MEDLINE | ID: mdl-28186784

ABSTRACT

Information theory quantifies the optimal rates of resource interconversions, usually in terms of entropies. However, nonadditivity often makes evaluating entropic formulas intractable. In a few auspicious cases, additivity allows a full characterization of optimal rates. We study uniform additivity of formulas, which is easily evaluated and captures all known additive quantum formulas. Our complete characterization of uniform additivity exposes an intriguing new additive quantity and identifies a remarkable coincidence-the classical and quantum uniformly additive functions with one auxiliary variable are identical.

SELECTION OF CITATIONS
SEARCH DETAIL
...