Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Br J Cancer ; 130(1): 19-30, 2024 01.
Article in English | MEDLINE | ID: mdl-37884682

ABSTRACT

The side effects of cancer therapy continue to cause significant health and cost burden to the patient, their friends and family, and governments. A major barrier in the way in which these side effects are managed is the highly siloed mentality that results in a fragmented approach to symptom control. Increasingly, it is appreciated that many symptoms are manifestations of common underlying pathobiology, with changes in the gastrointestinal environment a key driver for many symptom sequelae. Breakdown of the mucosal barrier (mucositis) is a common and early side effect of many anti-cancer agents, known to contribute (in part) to a range of highly burdensome symptoms such as diarrhoea, nausea, vomiting, infection, malnutrition, fatigue, depression, and insomnia. Here, we outline a rationale for how, based on its already documented effects on the gastrointestinal microenvironment, medicinal cannabis could be used to control mucositis and prevent the constellation of symptoms with which it is associated. We will provide a brief update on the current state of evidence on medicinal cannabis in cancer care and outline the potential benefits (and challenges) of using medicinal cannabis during active cancer therapy.


Subject(s)
Medical Marijuana , Mucositis , Neoplasms , Humans , Medical Marijuana/adverse effects , Mucositis/drug therapy , Neoplasms/drug therapy , Nausea/chemically induced , Nausea/drug therapy , Vomiting , Tumor Microenvironment
2.
Brain Behav Immun ; 115: 229-247, 2024 01.
Article in English | MEDLINE | ID: mdl-37858741

ABSTRACT

Childhood is recognised as a period of immense physical and emotional development, and this, in part, is driven by underlying neurophysiological transformations. These neurodevelopmental processes are unique to the paediatric brain and are facilitated by augmented rates of neuroplasticity and expanded neural stem cell populations within neurogenic niches. However, given the immaturity of the developing central nervous system, innate protective mechanisms such as neuroimmune and antioxidant responses are functionally naïve which results in periods of heightened sensitivity to neurotoxic insult. This is highly relevant in the context of paediatric cancer, and in particular, the neurocognitive symptoms associated with treatment, such as surgery, radio- and chemotherapy. The vulnerability of the developing brain may increase susceptibility to damage and persistent symptomology, aligning with reports of more severe neurocognitive dysfunction in children compared to adults. It is therefore surprising, given this intensified neurocognitive burden, that most of the pre-clinical, mechanistic research focuses exclusively on adult populations and extrapolates findings to paediatric cohorts. Given this dearth of age-specific research, throughout this review we will draw comparisons with neurodevelopmental disorders which share comparable pathways to cancer treatment related side-effects. Furthermore, we will examine the unique nuances of the paediatric brain along with the somatic systems which influence neurological function. In doing so, we will highlight the importance of developing in vitro and in vivo paediatric disease models to produce age-specific discovery and clinically translatable research.


Subject(s)
Brain Diseases , Chemotherapy-Related Cognitive Impairment , Neoplasms , Adult , Child , Humans , Brain
3.
Brain Behav Immun ; 115: 13-25, 2024 01.
Article in English | MEDLINE | ID: mdl-37757978

ABSTRACT

The gastrointestinal microbiota has received increasing recognition as a key mediator of neurological conditions with neuroinflammatory features, through its production of the bioactive metabolites, short-chain fatty acids (SCFAs). Although neuroinflammation is a hallmark shared by the neuropsychological complications of chemotherapy (including cognitive impairment, fatigue and depression), the use of microbial-based therapeutics has not previously been studied in this setting. Therefore, we aimed to investigate the effect of a high fibre diet known to modulate the microbiota, and its associated metabolome, on neuroinflammation caused by the common chemotherapeutic agent 5-fluorouracil (5-FU). Twenty-four female C57Bl/6 mice were treated with 5-FU (400 mg/kg, intraperitoneal, i.p.) or vehicle control, with or without a high fibre diet (constituting amylose starch; 4.7 % crude fibre content), given one week prior to 5-FU and until study completion (16 days after 5-FU). Faecal pellets were collected longitudinally for 16S rRNA gene sequencing and terminal SCFA concentrations of the caecal contents were quantified using gas chromatography-mass spectrometry (GC-MS). Neuroinflammation was determined by immunofluorescent analysis of astrocyte density (GFAP). The high fibre diet significantly altered gut microbiota composition, increasing the abundance of Bacteroidaceae and Akkermansiaceae (p < 0.0001 and p = 0.0179) whilst increasing the production of propionate (p = 0.0097). In the context of 5-FU, the diet reduced GFAP expression in the CA1 region of the hippocampus (p < 0.0001) as well as the midbrain (p = 0.0216). Astrocyte density negatively correlated with propionate concentrations and the abundance of Bacteroidaceae and Akkermansiaceae, suggesting a relationship between neuroinflammatory and gastrointestinal markers in this model. This study provides the first evidence of the neuroprotective effects of fibre via dietary intake in alleviating the neuroimmune changes seen in response to systemically administered 5-FU, indicating that the microbiota-gut-brain axis is a targetable mediator to reduce the neurotoxic effects of chemotherapy treatment.


Subject(s)
Neuroinflammatory Diseases , Propionates , Female , Animals , Mice , RNA, Ribosomal, 16S , Diet , Fluorouracil
4.
Int J Mol Sci ; 24(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003503

ABSTRACT

Oral mucositis (OM) is a significant complication of cancer therapy with limited management strategies. Whilst inflammation is a central feature of destructive and ultimately ulcerative pathology, to date, attempts to mitigate damage via this mechanism have proven limited. A relatively underexamined aspect of OM development is the contribution of elements of the innate immune system. In particular, the role played by barriers, pattern recognition systems, and microbial composition in early damage signaling requires further investigation. As such, this review highlights the innate immune response as a potential focus for research to better understand OM pathogenesis and development of interventions for patients treated with radiotherapy and chemotherapy. Future areas of evaluation include manipulation of microbial-mucosal interactions to alter cytotoxic sensitivity, use of germ-free models, and translation of innate immune-targeted agents interrogated for mucosal injury in other regions of the alimentary canal into OM-based clinical trials.


Subject(s)
Antineoplastic Agents , Mucositis , Stomatitis , Humans , Stomatitis/drug therapy , Antineoplastic Agents/therapeutic use , Inflammation/drug therapy , Immunity, Innate , Gastrointestinal Tract , Mucositis/drug therapy
5.
Med Sci Educ ; 33(3): 719-727, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37501807

ABSTRACT

Introduction: Active learning engages students in the learning process through meaningful learning activities. Despite evidence that active learning can improve student's comprehension and problem solving, many educators remain reluctant to adopt it. The goal of this study was to explore health professions' educators' perceptions of active learning and identify implementation barriers. Materials and Methods: We developed a 25-question survey based on the Miller and Metz "perceptions of active learning" survey. We added 12 single-response demographics questions to the original 13 survey questions. Results: One hundred three respondents completed the survey. We found positive perceptions of active learning significantly correlated with gender, rank, teaching FTE, and full-time employment. The use of specific active learning modalities significantly correlated with gender, terminal degree, institutional appointment, academic rank, and role. Lack of time to develop materials and lack of class time were the most common personal barriers identified, while being lecture-accustomed and lack of training were the most common perceived barriers to the implementation of active learning by their peers. Conclusion: Despite overwhelmingly positive perceptions of active learning among US health professions' educators and desire to incorporate it, a gap still exists between institutional and educators' support of active learning due to implementation barriers for resource-intensive active learning.

6.
Cell Death Dis ; 14(5): 338, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37221162

ABSTRACT

Cytotoxicity (i.e. cell death) is the core mechanism by which chemotherapy induces its anti-cancer effects. Unfortunately, this same mechanism underpins the collateral damage it causes to healthy tissues. The gastrointestinal tract is highly susceptible to chemotherapy's cytotoxicity, resulting in ulcerative lesions (termed gastrointestinal mucositis, GI-M) that impair the functional capacity of the gut leading to diarrhea, anorexia, malnutrition and weight loss, which negatively impact physical/psychological wellbeing and treatment adherence. Preventing these side effects has proven challenging given the overlapping mechanisms that dictate chemotherapy efficacy and toxicity. Here, we report on a novel dietary intervention that, due to its localized gastrointestinal effects, is able to protect the intestinal mucosal from unwanted toxicity without impairing the anti-tumor effects of chemotherapy. The test diet (containing extensively hydrolyzed whey protein and medium chain triglycerides (MCTs)), was investigated in both tumor-naïve and tumor-bearing models to evaluate its effect on GI-M and chemo-efficacy, respectively. In both models, methotrexate was used as the representative chemotherapeutic agent and the diet was provided ad libitum for 14 days prior to treatment. GI-M was measured using the validated biomarker plasma citrulline, and chemo-efficacy defined by tumor burden (cm3/g body weight). The test diet significantly attenuated GI-M (P = 0.03), with associated reductions in diarrhea (P < 0.0001), weight loss (P < 0.05), daily activity (P < 0.02) and maintenance of body composition (P < 0.02). Moreover, the test diet showed significant impact on gut microbiota by increasing diversity and resilience, whilst also altering microbial composition and function (indicated by cecal short and brained chain fatty acids). The test diet did not impair the efficacy of methotrexate against mammary adenocarcinoma (tumor) cells. In line with the first model, the test diet minimized intestinal injury (P = 0.001) and diarrhea (P < 0.0001). These data support translational initiatives to determine the clinical feasibility, utility and efficacy of this diet to improve chemotherapy treatment outcomes.


Subject(s)
Gastrointestinal Microbiome , Whey , Humans , Whey Proteins , Methotrexate , Diet , Intestinal Mucosa , Triglycerides , Diarrhea
7.
Med Sci Educ ; 31(1): 11-13, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33133755

ABSTRACT

After transitioning to a virtual flipped classroom due to COVID-19, pre-clinical content application session facilitators noted decreased engagement in large group sessions. Thus, we developed a synchronous virtual team-based learning session using Microsoft Forms. Students identified increased engagement, deeper learning, and ease of technology use as benefits to online team-based learning.

8.
Cell Oncol (Dordr) ; 39(5): 435-447, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27306526

ABSTRACT

BACKGROUND: The O6-methylguanine-DNA methyltransferase (MGMT) protein removes O6-alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. METHODS: In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. RESULTS: Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. CONCLUSIONS: The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.


Subject(s)
DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Gene Expression Regulation, Neoplastic/genetics , Haplotypes/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Cell Line, Tumor , DNA Repair/genetics , Humans , Protein Binding/physiology , Transcription, Genetic/genetics
9.
Elife ; 42015 Sep 19.
Article in English | MEDLINE | ID: mdl-26386247

ABSTRACT

Joubert syndrome (JBTS) is a severe recessive neurodevelopmental ciliopathy which can affect several organ systems. Mutations in known JBTS genes account for approximately half of the cases. By homozygosity mapping and whole-exome sequencing, we identified a novel locus, JBTS23, with a homozygous splice site mutation in KIAA0586 (alias TALPID3), a known lethal ciliopathy locus in model organisms. Truncating KIAA0586 mutations were identified in two additional patients with JBTS. One mutation, c.428delG (p.Arg143Lysfs*4), is unexpectedly common in the general population and may be a major contributor to JBTS. We demonstrate KIAA0586 protein localization at the basal body in human and mouse photoreceptors, as is common for JBTS proteins, and also in pericentriolar locations. We show that loss of TALPID3 (KIAA0586) function in animal models causes abnormal tissue polarity, centrosome length and orientation, and centriolar satellites. We propose that JBTS and other ciliopathies may in part result from cell polarity defects.


Subject(s)
Cell Cycle Proteins/genetics , Cell Polarity , Centrosome/metabolism , Cerebellum/abnormalities , Mutation , Retina/abnormalities , Abnormalities, Multiple/genetics , Animals , Disease Models, Animal , Eye Abnormalities/genetics , Humans , Kidney Diseases, Cystic/genetics , Mice
10.
Biomed Res Int ; 2015: 257090, 2015.
Article in English | MEDLINE | ID: mdl-26339600

ABSTRACT

The relationship between oxidative stress and miRNA changes in placenta as a potential mechanism involved in preeclampsia (PE) is not fully elucidated. We investigated the impact of oxidative stress on miRNAs and mRNA expression profiles of genes associated with PE in villous 3A first trimester trophoblast cells exposed to H2O2 at 12 different concentrations (0-1 mM) for 0.5, 4, 24, and 48 h. Cytotoxicity, determined using the SRB assay, was used to calculate the IC50 of H2O2. RNA was extracted after 4 h exposure to H2O2 for miRNA and gene expression profiling. H2O2 exerted a concentration- and time-dependent cytotoxicity on 3A trophoblast cells. Short-term exposure of 3A cells to low concentration of H2O2 (5% of IC50) significantly altered miRNA profile as evidenced by significant changes in 195 out of 595 evaluable miRNAs. Tool for annotations of microRNAs (TAM) analysis indicated that these altered miRNAs fall into 43 clusters and 34 families, with 41 functions identified. Exposure to H2O2 altered mRNA expression of 22 out of 84 key genes involved in dysregulation of placental development. In conclusion, short-term exposure of villous first trimester trophoblasts to low concentrations of H2O2 significantly alters miRNA profile and expression of genes implicated in placental development.


Subject(s)
MicroRNAs/biosynthesis , Oxidative Stress/genetics , Placentation/genetics , Pre-Eclampsia/genetics , Chorionic Villi/metabolism , Female , Gene Expression Regulation, Developmental , Humans , Hydrogen Peroxide/toxicity , Oxidative Stress/drug effects , Placenta/drug effects , Placentation/drug effects , Pre-Eclampsia/pathology , Pregnancy , Pregnancy Trimester, First , Transcriptome , Trophoblasts/metabolism
11.
Carcinogenesis ; 35(3): 564-71, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24163400

ABSTRACT

The O6-methylguanine-DNA methyltransferase gene (MGMT) encodes the direct reversal DNA repair protein that removes alkyl adducts from the O6 position of guanine. Several single-nucleotide polymorphisms (SNPs) exist in the MGMT promoter/enhancer (P/E) region. However, the haplotype structure encompassing these SNPs and their functional/biological significance are currently unknown. We hypothesized that MGMT P/E haplotypes, rather than individual SNPs, alter MGMT transcription and can thus alter human sensitivity to alkylating agents. To identify the haplotype structure encompassing the MGMT P/E region SNPs, we sequenced 104 DNA samples from healthy individuals and inferred the haplotypes using the data generated. We identified eight SNPs in this region, namely T7C (rs180989103), T135G (rs1711646), G290A (rs61859810), C485A (rs1625649), C575A (rs113813075), G666A (rs34180180), C777A (rs34138162) and C1099T (rs16906252). Phylogenetics and Sequence Evolution analysis predicted 21 potential haplotypes that encompass these SNPs ranging in frequencies from 0.000048 to 0.39. Of these, 10 were identified in our study population as 20 paired haplotype combinations. To determine the functional significance of these haplotypes, luciferase reporter constructs representing these haplotypes were transfected into glioblastoma cells and their effect on MGMT promoter activity was determined. Compared with the most common (reference) haplotype 1, seven haplotypes significantly upregulated MGMT promoter activity (18-119% increase; P < 0.05), six significantly downregulated MGMT promoter activity (29-97% decrease; P < 0.05) and one haplotype had no effect. Mechanistic studies conducted support the conclusion that MGMT P/E haplotypes, rather than individual SNPs, differentially regulate MGMT transcription and could thus play a significant role in human sensitivity to environmental and therapeutic alkylating agents.


Subject(s)
Alkylating Agents/pharmacology , Biomarkers/analysis , Enhancer Elements, Genetic , Gene Expression Regulation , O(6)-Methylguanine-DNA Methyltransferase/genetics , Promoter Regions, Genetic , Transcription, Genetic , Base Sequence , DNA Primers , Haplotypes , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...