Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Nat Commun ; 14(1): 6539, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37863938

ABSTRACT

Tools enable animals to exploit and command new resources. However, the neural circuits underpinning tool use and how neural activity varies with an animal's tool proficiency, are only known for humans and some other primates. We use 18F-fluorodeoxyglucose positron emission tomography to image the brain activity of naïve vs trained American crows (Corvus brachyrhynchos) when presented with a task requiring the use of stone tools. As in humans, talent affects the neural circuits activated by crows as they prepare to execute the task. Naïve and less proficient crows use neural circuits associated with sensory- and higher-order processing centers (the mesopallium and nidopallium), while highly proficient individuals increase activity in circuits associated with motor learning and tactile control (hippocampus, tegmentum, nucleus basorostralis, and cerebellum). Greater proficiency is found primarily in adult female crows and may reflect their need to use more cognitively complex strategies, like tool use, to obtain food.


Subject(s)
Crows , Tool Use Behavior , Humans , Animals , Adult , Female , Hippocampus
2.
J Neuroimaging ; 33(6): 933-940, 2023.
Article in English | MEDLINE | ID: mdl-37695098

ABSTRACT

BACKGROUND AND PURPOSE: To assess the feasibility of 3-dimensional stereotactic surface projection (3D-SSP) as applied to arterial spin labeling (ASL) in a clinical pilot study. METHODS: A retrospective sample of 10 consecutive patients who underwent ASL as part of a clinically indicated MR examination was collected during this pilot study. Five additional subjects with normal cerebral perfusion served as a control group. Following voxel-wise M0-correction, cerebral blood flow (CBF) quantification, and stereotactic anatomic standardization, voxel-wise CBF from an individual's ASL dataset was extracted to a set of predefined surface pixels (3D-SSP). A normal database was created from averaging the extracted CBF datasets of the control group. Patients' datasets were compared individually with the normal database by calculating a Z-score on a pixel-by-pixel basis and were displayed in 3D-SSP views for visual inspection. Independent, two-expert reader assessment, using a 3-point scale, compared standard quantitative CBF images to the 3D-SSP maps. RESULTS: Patterns and severities of regionally reduced CBF were identified, by both independent readers, in the 3D-SSP maps. Reader assessment demonstrated preference for 3D-SSP over traditionally displayed standard quantitative CBF images in three of four evaluated imaging metrics (p = .026, .031, and .013, respectively); 3D-SSP maps were never found to be inferior to the standard quantitative CBF images. CONCLUSIONS: Three-dimensional SSP maps are feasible in a clinical population and enable quantitative data extraction and localization of perfusion abnormalities by means of stereotactic coordinates in a condensed display. The proposed method is a promising approach for interpreting cerebrovascular pathophysiology.


Subject(s)
Arteries , Imaging, Three-Dimensional , Humans , Spin Labels , Pilot Projects , Retrospective Studies , Imaging, Three-Dimensional/methods , Cerebrovascular Circulation/physiology , Magnetic Resonance Imaging/methods
3.
J Nucl Med ; 64(1): 20-29, 2023 01.
Article in English | MEDLINE | ID: mdl-36599475

ABSTRACT

Imaging of mild traumatic brain injury (TBI) using conventional techniques such as CT or MRI often results in no specific imaging correlation that would explain cognitive and clinical symptoms. Molecular imaging of mild TBI suggests that secondary events after injury can be detected using PET. However, no single specific pattern emerges that can aid in diagnosing the injury or determining the prognosis of the long-term behavioral profiles, indicating the heterogeneous and diffuse nature of TBI. Chronic traumatic encephalopathy, a primary tauopathy, has been shown to be strongly associated with repetitive TBI. In vivo data on the available tau PET tracers, however, have produced mixed results and overall low retention profiles in athletes with a history of repetitive mild TBI. Here, we emphasize that the lack of a mechanistic understanding of chronic TBI has posed a challenge when interpreting the results of molecular imaging biomarkers. We advocate for better target identification, improved analysis techniques such as machine learning or artificial intelligence, and novel tracer development.


Subject(s)
Brain Injuries, Traumatic , Brain Injury, Chronic , Tauopathies , Humans , Brain/diagnostic imaging , Artificial Intelligence , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/complications , Brain Injury, Chronic/complications
4.
Ann Nucl Med ; 36(10): 913-921, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35913591

ABSTRACT

OBJECTIVE: While the use of biomarkers for the detection of early and preclinical Alzheimer's Disease has become essential, the need to wait for over an hour after injection to obtain sufficient image quality can be challenging for patients with suspected dementia and their caregivers. This study aimed to develop an image-based deep-learning technique to generate delayed uptake patterns of amyloid positron emission tomography (PET) images using only early-phase images obtained from 0-20 min after radiotracer injection. METHODS: We prepared pairs of early and delayed [11C]PiB dynamic images from 253 patients (cognitively normal n = 32, fronto-temporal dementia n = 39, mild cognitive impairment n = 19, Alzheimer's disease n = 163) as a training dataset. The neural network was trained with the early images as the input, and the output was the corresponding delayed image. A U-net convolutional neural network (CNN) and a conditional generative adversarial network (C-GAN) were used for the deep-learning architecture and the data augmentation methods, respectively. Then, an independent test data set consisting of early-phase amyloid PET images (n = 19) was used to generate corresponding delayed images using the trained network. Two nuclear medicine physicians interpreted the actual delayed images and predicted delayed images for amyloid positivity. In addition, the concordance of the actual delayed and predicted delayed images was assessed statistically. RESULTS: The concordance of amyloid positivity between the actual versus AI-predicted delayed images was 79%(κ = 0.60) and 79% (κ = 0.59) for each physician, respectively. In addition, the physicians' agreement rate was at 89% (κ = 0.79) when the same image was interpreted. And, the actual versus AI-predicted delayed images were not readily distinguishable (correct answer rate, 55% and 47% for each physician, respectively). The statistical comparison of the actual versus the predicted delated images indicated that the peak signal-to-noise ratio (PSNR) was 21.8 dB ± 2.2 dB, and the structural similarity index (SSIM) was 0.45 ± 0.04. CONCLUSION: This study demonstrates the feasibility of an image-based deep-learning framework to predict delayed patterns of Amyloid PET uptake using only the early phase images. This AI-based image generation method has the potential to reduce scan time for amyloid PET and increase the patient throughput, without sacrificing diagnostic accuracy for amyloid positivity.


Subject(s)
Alzheimer Disease , Amyloidosis , Deep Learning , Alzheimer Disease/diagnostic imaging , Amyloid , Humans , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography/methods , Signal-To-Noise Ratio
5.
PET Clin ; 17(1): 57-64, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34809870

ABSTRACT

AI has been applied to brain molecular imaging for over 30 years. The past two decades, have seen explosive progress. AI applications span from operations processes such as attenuation correction and image generation, to disease diagnosis and prediction. As sophistication in AI software platforms increases, and the availability of large imaging data repositories become common, future studies will incorporate more multidimensional datasets and information that may truly reach "superhuman" levels in the field of brain imaging. However, even with a growing level of complexity, these advanced networks will still require human supervision for appropriate application and interpretation in medical practice.


Subject(s)
Artificial Intelligence , Brain , Brain/diagnostic imaging , Forecasting , Humans , Molecular Imaging , Software
6.
Front Physiol ; 12: 766345, 2021.
Article in English | MEDLINE | ID: mdl-34867472

ABSTRACT

Social interaction among animals can occur under many contexts, such as during foraging. Our knowledge of the regions within an avian brain associated with social interaction is limited to the regions activated by a single context or sensory modality. We used 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) to examine American crow (Corvus brachyrhynchos) brain activity in response to conditions associated with communal feeding. Using a paired approach, we exposed crows to either a visual stimulus (the sight of food), an audio stimulus (the sound of conspecifics vocalizing while foraging) or both audio/visual stimuli presented simultaneously and compared to their brain activity in response to a control stimulus (an empty stage). We found two regions, the nucleus taenia of the amygdala (TnA) and a medial portion of the caudal nidopallium, that showed increased activity in response to the multimodal combination of stimuli but not in response to either stimulus when presented unimodally. We also found significantly increased activity in the lateral septum and medially within the nidopallium in response to both the audio-only and the combined audio/visual stimuli. We did not find any differences in activation in response to the visual stimulus by itself. We discuss how these regions may be involved in the processing of multimodal stimuli in the context of social interaction.

7.
J Alzheimers Dis ; 83(1): 379-394, 2021.
Article in English | MEDLINE | ID: mdl-34308901

ABSTRACT

BACKGROUND: Microtubule stabilizing drugs, commonly used as anti-cancer therapeutics, have been proposed for treatment of Alzheimer's disease (AD); however, many do not cross the blood-brain barrier. OBJECTIVE: This research investigated if paclitaxel (PTX) delivered via the intranasal (IN) route could alter the phenotypic progression of AD in 3xTg-AD mice. METHODS: We administered intranasal PTX in 3XTg-AD mice (3xTg-AD n = 15, 10 weeks and n = 10, 44 weeks, PTX: 0.6 mg/kg or 0.9%saline (SAL)) at 2-week intervals. After treatment, 3XTg-AD mice underwent manganese-enhanced magnetic resonance imaging to measure in vivo axonal transport. In a separate 3XTg-AD cohort, PTX-treated mice were tested in a radial water tread maze at 52 weeks of age after four treatments, and at 72 weeks of age, anxiety was assessed by an elevated-plus maze after 14 total treatments. RESULTS: PTX increased axonal transport rates in treated 3XTg-AD compared to controls (p≤0.003). Further investigation using an in vitro neuron model of Aß-induced axonal transport disruption confirmed PTX prevented axonal transport deficits. Confocal microscopy after treatment found fewer phospho-tau containing neurons (5.25±3.8 versus 8.33±2.5, p < 0.04) in the CA1, altered microglia, and reduced reactive astrocytes. PTX improved performance of 3xTg-AD on the water tread maze compared to controls and not significantly different from WT (Day 5, 143.8±43 versus 91.5±77s and Day 12, 138.3±52 versus 107.7±75s for SAL versus PTX). Elevated plus maze revealed that PTX-treated 3xTg-AD mice spent more time exploring open arms (Open arm 129.1±80 versus 20.9±31s for PTX versus SAL, p≤0.05). CONCLUSION: Taken collectively, these findings indicate that intranasal-administered microtubule-stabilizing drugs may offer a potential therapeutic option for treating AD.


Subject(s)
Alzheimer Disease/metabolism , Antineoplastic Agents, Phytogenic/therapeutic use , Blood-Brain Barrier/metabolism , Mice, Transgenic , Neurons/metabolism , Paclitaxel/therapeutic use , Administration, Intranasal , Animals , Axonal Transport , Brain/metabolism , Disease Models, Animal , Humans , Magnetic Resonance Imaging , Male , Mice , Morris Water Maze Test
8.
Med Phys ; 48(8): 4395-4401, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33999427

ABSTRACT

PURPOSE: To demonstrate that magnetic resonance-guided focused ultrasound (MRgFUS) facilitates blood-spinal cord barrier (BSCB) permeability and develop observer-independent MRI quantification of BSCB permeability after MRgFUS for spinal cord injury (SCI). METHODS: Noninjured Sprague-Dawley rats (n = 3) underwent MRgFUS and were administered Evans blue post-MRgFUS to confirm BSCB opening. Absorbance was measured by spectrophotometry and correlated with its corresponding image intensity. Rats (n = 21) underwent T8-T10 laminectomy and extradural compression of the spinal cord (23g weighted aneurysm-type clip, 1 min). The intervention group (n = 11) was placed on a preclinical MRgFUS system, administered microbubbles (Optison, 0.2 mL/kg), and received 3 MRgFUS sonications (25 ms bursts, 1 Hz pulses for 3 min, 3 acoustic W, approximately 1.0-2.1 MPa peak pressure as measured via hydrophone). The sham group (n = 10) received equivalent procedures with no sonications. T1w MRI was obtained both pre- and post-MRgFUS BSCB opening. Spinal cords were segmented manually or semiautomatically and a Pearson correlation with P ≤ 0.001 was used to correlate the two segmentation methods. MRgFUS sonication and control regions intensity values were evaluated with a paired t-test with a P ≤ 0.01. RESULTS: Semiautomatic segmentation reduced computational time by 95% and was correlated with manual segmentation (Pearson = 0.92, P < 0.001, n = 71 regions). In the noninjured rat group, Evans blue absorbance correlated with image intensity in the MRgFUS and control regions (Pearson = 0.82, P = 0.02, n = 6). In rats that underwent the SCI procedure, an increase in signal intensity in the MRgFUS targeted region relative to control was seen in all SCI rats (10.65 ± 12.4%, range: 0.96-43.9%, n = 11, P = 0.002). SCI sham MRgFUS revealed no change (0.63 ± 0.52%, 95% CI 0.320.95, n = 10). This result was significant between both groups (P = 0.003). CONCLUSION: The implemented semiautomatic segmentation procedure improved data analysis efficiency. Quantitative methods using contrast-enhanced MRI with histological validation are sensitive for detection of blood-spinal cord barrier opening induced by magnetic resonance-guided focused ultrasound.


Subject(s)
Blood-Brain Barrier , Spinal Cord Injuries , Animals , Blood-Brain Barrier/diagnostic imaging , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Permeability , Rats , Rats, Sprague-Dawley , Spinal Cord/diagnostic imaging , Spinal Cord Injuries/diagnostic imaging
9.
J Neurol Sci ; 417: 117049, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32758764

ABSTRACT

Mounting evidence points to the significance of neurovascular-related dysfunction in veterans with blast-related mTBI, which is also associated with reduced [18F]-fluorodeoxyglucose (FDG) uptake. The goal of this study was to determine whether plasma VEGF-A is altered in veterans with blast-related mTBI and address whether VEGF-A levels correlate with FDG uptake in the cerebellum, a brain region that is vulnerable to blast-related injury 72 veterans with blast-related mTBI (mTBI) and 24 deployed control (DC) veterans with no lifetime history of TBI were studied. Plasma VEGF-A was significantly elevated in mTBIs compared to DCs. Plasma VEGF-A levels in mTBIs were significantly negatively correlated with FDG uptake in cerebellum. In addition, performance on a Stroop color/word interference task was inversely correlated with plasma VEGF-A levels in blast mTBI veterans. Finally, we observed aberrant perivascular VEGF-A immunoreactivity in postmortem cerebellar tissue and not cortical or hippocampal tissues from blast mTBI veterans. These findings add to the limited number of plasma proteins that are chronically elevated in veterans with a history of blast exposure associated with mTBI. It is likely the elevated VEGF-A levels are from peripheral sources. Nonetheless, increasing plasma VEGF-A concentrations correlated with chronically decreased cerebellar glucose metabolism and poorer performance on tasks involving cognitive inhibition and set shifting. These results strengthen an emerging view that cognitive complaints and functional brain deficits caused by blast exposure are associated with chronic blood-brain barrier injury and prolonged recovery in affected regions.


Subject(s)
Blast Injuries , Brain Concussion , Stress Disorders, Post-Traumatic , Veterans , Blast Injuries/complications , Blast Injuries/diagnostic imaging , Humans , Vascular Endothelial Growth Factor A
10.
Behav Brain Res ; 385: 112546, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32035868

ABSTRACT

Animals utilize a variety of auditory and visual cues to navigate the landscape of fear. For some species, including corvids, dead conspecifics appear to act as one such visual cue of danger, and prompt alarm calling by attending conspecifics. Which brain regions mediate responses to dead conspecifics, and how this compares to other threats, has so far only been speculative. Using 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) we contrast the metabolic response to visual and auditory cues associated with a dead conspecific among five a priori selected regions in the American crow (Corvus brachyrhynchos) brain: the hippocampus, nidopallium caudolaterale, striatum, amygdala, and the septum. Using a repeated-measures, fully balanced approach, we exposed crows to four stimuli: a dead conspecific, a dead song sparrow (Melospiza melodia), conspecific alarm calls given in response to a dead crow, and conspecific food begging calls. We find that in response to observations of a dead crow, crows show significant activity in areas associated with higher-order decision-making (NCL), but not in areas associated with social behaviors or fear learning. We do not find strong differences in activation between hearing alarm calls and food begging calls; both activate the NCL. Lastly, repeated exposures to negative stimuli had a marginal effect on later increasing the subjects' brain activity in response to control stimuli, suggesting that crows might quickly learn from negative experiences.


Subject(s)
Brain/diagnostic imaging , Death , Fear/physiology , Learning/physiology , Social Behavior , Vocalization, Animal , Acoustic Stimulation , Amygdala/diagnostic imaging , Amygdala/physiology , Animals , Brain/physiology , Corpus Striatum/diagnostic imaging , Corpus Striatum/physiology , Crows , Decision Making , Fluorodeoxyglucose F18 , Functional Neuroimaging , Hippocampus/diagnostic imaging , Hippocampus/physiology , Photic Stimulation , Positron-Emission Tomography , Radiopharmaceuticals , Septum of Brain/diagnostic imaging , Septum of Brain/physiology , Thanatology
11.
J Alzheimers Dis ; 67(3): 859-874, 2019.
Article in English | MEDLINE | ID: mdl-30664506

ABSTRACT

Repetitive mild traumatic brain injury (rmTBI) is known to disturb axonal integrity and may play an important role in the pathogenic cascades leading to neurodegeneration. One critical approach to reduce the future onset of neurodegeneration is to intervene in this process at an early stage following a brain injury. Previously we showed that direct application of the microtubule-stabilizing drug, paclitaxel, on the brain following controlled cortical impact improved motor function and reduced lesion size. Herein, we extended these findings to a model of mild brain injury induced by repeated closed-skull impacts. Paclitaxel was administered intranasally to circumvent its poor transport across the blood-brain barrier. Mice received five mild closed-skull impacts (one per day for five days). Intranasal paclitaxel was administered once only, immediately after the first impact. We found that paclitaxel prevented injury-induced deficits in a spatial memory task in a water tread maze. In vivo magnetic resonance imaging (MRI) and positron emission tomography with 18F-flurodeoxyglucose (FDG-PET) revealed that paclitaxel prevented structural injury and hypometabolism. On MRI, apparent, injury-induced microbleeds were observed in 100% of vehicle-treated rmTBI mice, but not in paclitaxel-treated subjects. FDG-PET revealed a 42% increase in whole brain glucose metabolism in paclitaxel-treated mice as compared to vehicle-treated rmTBI. Immunohistochemistry found reduced evidence of axonal injury and synaptic loss. Our results indicate that intranasal paclitaxel administration imparts neuroprotection against brain injury and cognitive impairment in mice. The results from this study support the idea that microtubule-stabilization strategies hold therapeutic promise in mitigating traumatic brain injury.


Subject(s)
Brain Concussion/prevention & control , Craniocerebral Trauma/complications , Paclitaxel/therapeutic use , Tubulin Modulators/therapeutic use , Administration, Intranasal , Animals , Brain/diagnostic imaging , Brain/drug effects , Brain/pathology , Brain Concussion/diagnostic imaging , Brain Concussion/pathology , Diffusion Tensor Imaging , Male , Maze Learning , Mice , Mice, Inbred C57BL , Neuroimaging , Paclitaxel/administration & dosage , Tubulin Modulators/administration & dosage , beta-Lactamases
12.
J Vis Exp ; (125)2017 07 17.
Article in English | MEDLINE | ID: mdl-28745642

ABSTRACT

Despite the recent increase in use of mouse models in scientific research, researchers continue to use cognitive tasks that were originally designed and validated for rat use. The Radial Water Tread (RWT) maze test of spatial memory (designed specifically for mice and requiring no swimming) has been shown previously to successfully distinguish between controlled cortical impact-induced TBI mice and sham controls. Here, a detailed protocol for this task is presented. The RWT maze capitalizes on the natural tendency of mice to avoid open areas in favor of hugging the sides of an apparatus (thigmotaxis). The walls of the maze are lined with nine escape holes placed above the floor of the apparatus, and mice are trained to use visual cues to locate the escape hole that leads out of the maze. The maze is filled with an inch of cold water, sufficient to motivate escape but not deep enough to require that the mouse swim. The acquisition period takes only four training days, with a test of memory retention on day five and a long-term memory test on day 12. The results reported here suggest that the RWT maze is a feasible alternative to rat-validated, swimming-based cognitive tests in the assessment of spatial memory deficits in mouse models of TBI.


Subject(s)
Brain Injuries/physiopathology , Maze Learning , Spatial Memory/physiology , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Video Recording
13.
Neural Regen Res ; 12(12): 2045-2049, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29323044

ABSTRACT

Spinal cord injury (SCI) affects thousands of people every year in the USA, and most patients are left with some permanent paralysis. Therapeutic options are limited and only modestly affect outcome. To address this issue, we used magnetic resonance imaging-guided focused ultrasound (MRgFUS) as a non-invasive approach to increase permeability in the blood-spinal cord barrier (BSCB). We hypothesize that localized, controlled sonoporation of the BSCB by MRgFUS will aid delivery of therapeutics to the injury. Here, we report our preliminary findings for the ability of MRgFUS to increase BSCB permeability in the thoracic spinal cord of a normal rat model. First, an excised portion of normal rat spinal column was used to characterize the acoustic field and to estimate the insertion losses that could be expected in an MRgFUS blood spinal cord barrier opening. Then, in normal rats, MRgFUS was applied in combination with intravenously administered microbubbles to the spinal cord region. Permeability of the BSCB was indicated as signal enhancement by contrast administered prior to T1-weighted magnetic resonance imaging and verified by Evans blue dye. Neurological testing using the Basso, Beattie, and Breshnahan scale and the ladder walk was normal in 8 of 10 rats tested. Two rats showed minor impairment indicating need for further refinement of parameters. No gross tissue damage was evident by histology. In this study, we have opened successfully the blood spinal cord barrier in the thoracic region of the normal rat spine using magnetic resonance-guided focused ultrasound combined with microbubbles.

16.
Brain Res ; 1657: 140-147, 2017 02 15.
Article in English | MEDLINE | ID: mdl-27923635

ABSTRACT

INTRODUCTION: The use of forced-swim, rat-validated cognition tests in mouse models of traumatic brain injury (TBI) raises methodological concerns; such models are vulnerable to a number of confounding factors including impaired motor function and stress-induced non-compliance (failure to swim). This study evaluated the ability of a Radial Water Tread (RWT) maze, designed specifically for mice, that requires no swimming to distinguish mice with controlled cortical impact (CCI) induced TBI and Sham controls. METHODS: Ten-week-old, male C57BL6/J mice were randomly assigned to receive either Sham (n=14) or CCI surgeries (n=15). Mice were tested for sensorimotor deficits via Gridwalk test and Noldus CatWalk gait analysis at 1 and 32days post-injury. Mice received RWT testing at either 11days (early time point) or 35days (late time point) post-injury. RESULTS: Compared to Sham-treated animals, CCI-induced TBI resulted in significant impairment in RWT maze performance. Additionally, CCI injured mice displayed significant deficits on the Gridwalk test at both 1day and 32days post-injury, and impairment in the CatWalk task at 1day, but not 32days, compared to Shams. CONCLUSIONS: The Radial Water Tread maze capitalizes on the natural tendency of mice to avoid open areas in favor of hugging the edges of an apparatus (thigmotaxis), and replaces a forced-swim model with water shallow enough that the animal is not required to swim, but aversive enough to motivate escape. Our findings indicate the RWT task is a sensitive species-appropriate behavioral test for evaluating spatial memory impairment in a mouse model of TBI.


Subject(s)
Brain Injuries, Traumatic/psychology , Cognition Disorders/diagnosis , Disease Models, Animal , Maze Learning , Neuropsychological Tests , Animals , Behavior, Animal , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnosis , Cognition Disorders/etiology , Gait , Male , Mice, Inbred C57BL , Motor Activity
17.
Sci Transl Med ; 8(321): 321ra6, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26764157

ABSTRACT

Blast exposure can cause mild traumatic brain injury (TBI) in mice and other mammals. However, there are important gaps in our understanding of the neuropathology underlying repetitive blast exposure in animal models compared to the neuroimaging abnormalities observed in blast-exposed veterans. Moreover, how an increase in the number of blast exposures affects neuroimaging endpoints in blast-exposed humans is not well understood. We asked whether there is a dose-response relationship between the number of blast-related mild TBIs and uptake of (18)F-fluorodeoxyglucose (FDG), a commonly used indicator of neuronal activity, in the brains of blast-exposed veterans with mild TBI. We found that the number of blast exposures correlated with FDG uptake in the cerebellum of veterans. In mice, blast exposure produced microlesions in the blood-brain barrier (BBB) predominantly in the ventral cerebellum. Purkinje cells associated with these BBB microlesions displayed plasma membrane disruptions and aberrant expression of phosphorylated tau protein. Purkinje cell loss was most pronounced in the ventral cerebellar lobules, suggesting that early-stage breakdown of BBB integrity may be an important factor driving long-term brain changes. Blast exposure caused reactive gliosis in mouse cerebellum, particularly in the deep cerebellar nuclei. Diffusion tensor imaging tractography of the cerebellum of blast-exposed veterans revealed that mean diffusivity correlated negatively with the number of blast-related mild TBIs. Together, these results argue that the cerebellum is vulnerable to repetitive mild TBI in both mice and humans.


Subject(s)
Blast Injuries/complications , Blast Injuries/physiopathology , Cerebellar Diseases/etiology , Veterans , Animals , Axons/pathology , Brain Concussion/etiology , Cerebellar Diseases/pathology , Cerebellum/pathology , Cerebellum/physiopathology , Disks Large Homolog 4 Protein , Fluorodeoxyglucose F18/metabolism , Gliosis/complications , Gliosis/pathology , Glucose/metabolism , Guanylate Kinases/metabolism , Humans , Male , Membrane Proteins/metabolism , Mice, Inbred C57BL , Motor Activity , Neuroglia/pathology , Neurons/pathology , Purkinje Cells/pathology , Synapses/pathology
18.
Brain Res ; 1618: 299-308, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26086366

ABSTRACT

Pharmacologic interventions for traumatic brain injury (TBI) hold promise to improve outcome. The purpose of this study was to determine if the microtubule stabilizing therapeutic paclitaxel used for more than 20 years in chemotherapy would improve outcome after TBI. We assessed neurological outcome in mice that received direct application of paclitaxel to brain injury from controlled cortical impact (CCI). Magnetic resonance imaging was used to assess injury-related morphological changes. Catwalk Gait analysis showed significant improvement in the paclitaxel group on a variety of parameters compared to the saline group. MRI analysis revealed that paclitaxel treatment resulted in significantly reduced edema volume at site-of-injury (11.92 ± 3.0 and 8.86 ± 2.2mm(3) for saline vs. paclitaxel respectively, as determined by T2-weighted analysis; p ≤ 0.05), and significantly increased myelin tissue preservation (9.45 ± 0.4 vs. 8.95 ± 0.3, p ≤ 0.05). Our findings indicate that paclitaxel treatment resulted in improvement of neurological outcome and MR imaging biomarkers of injury. These results could have a significant impact on therapeutic developments to treat traumatic brain injury.


Subject(s)
Brain Injuries/drug therapy , Paclitaxel/therapeutic use , Treatment Outcome , Tubulin Modulators/therapeutic use , Animals , Brain Injuries/complications , Disease Models, Animal , Gait Disorders, Neurologic/drug therapy , Gait Disorders, Neurologic/etiology , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL
19.
Clin Nucl Med ; 40(3): 191-4, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25546191

ABSTRACT

OBJECTIVES: Differential vulnerabilities of subregional dopamine neurons have been suggested in movement disorders such as idiopathic Parkinson disease. In this study, we examined dopamine transporter (DaT) density in the striatum versus midbrain (MB) in patients with nigrostriatal denervation. METHODS: Brain SPECT was performed in 39 patients with parkinsonian syndrome (age 61 ± 15 years, 18 male patients) 4 hours after IV injection of 3 to 5 mCi 123I ioflupane using SPECT-CT acquisition. Images were reconstructed using OSEM with resolution recovery and correction for scatter and attenuation based on a low-dose CT. Peak pixel counts within the caudate head (CA), mid putamen (PT), and MB localized by sagittal CT, as well as averaged counts around the calcarine fissure as reference, were determined by region-of-interest analysis. Semiquantitative DaT values were expressed as CA, PT, or MB uptake relative to the reference. We then assessed the relationship between the MB measurements and independent clinical evaluation of motor symptoms in these patients. RESULTS: Averaged striatal DaT values for both hemispheres ranged from 1.67 to 6.59 for CA, 1.50 to 5.33 for PT, and 1.08 to 2.24 for MB. Within the high striatal DaT group (mean, 4.76 [SD, 0.55]) and low DaT group (mean, 2.71 [SD, 0.58]; dichotomy defined as a threshold of 4), mean DaT values in MB were 1.68 (SD, 0.32) and 1.53 (SD, 0.29), respectively, indicating nonsignificant 9% decrease (P > 0.15) in comparison to 43% decrease in the averaged striatal uptake. Within the high striatal DaT group, Pearson correlations between DaT values of CA and PT versus MB were highly significant at 0.81 and 0.82 (P ≤ 0.001), respectively, but those correlations were not significant, 0.35 (P > 0.05) and 0.06 (P > 0.75), in the low striatal DaT group. Midbrain uptake measurements did not correlate with motor symptoms (bradykinesia, tremor, rigidity, and postural instability). CONCLUSIONS: These findings indicate that reductions in DaT values in the striatum and MB are not necessarily simultaneous with the process of nigrostriatal denervation, and correlation of DaT values among CA/PT and MB becomes weaker as the denervation becomes more severe. Differential regional DaT loss may indicate differential vulnerability of DaT-containing neurons in these structures or could be in part related to tracer binding to non-DaT targets.


Subject(s)
Corpus Striatum/diagnostic imaging , Dopamine Plasma Membrane Transport Proteins/metabolism , Mesencephalon/diagnostic imaging , Parkinsonian Disorders/diagnostic imaging , Tomography, Emission-Computed, Single-Photon , Aged , Female , Humans , Male , Middle Aged , Nortropanes , Radiopharmaceuticals
20.
J Neurotrauma ; 31(5): 425-36, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24102309

ABSTRACT

Abstract Whether persisting cognitive complaints and postconcussive symptoms (PCS) reported by Iraq and Afghanistan war veterans with blast- and/or combined blast/impact-related mild traumatic brain injuries (mTBIs) are associated with enduring structural and/or functional brain abnormalities versus comorbid depression or posttraumatic stress disorder (PTSD) remains unclear. We sought to characterize relationships among these variables in a convenience sample of Iraq and Afghanistan-deployed veterans with (n=34) and without (n=18) a history of one or more combined blast/impact-related mTBIs. Participants underwent magnetic resonance imaging of fractional anisotropy (FA) and macromolecular proton fraction (MPF) to assess brain white matter (WM) integrity; [(18)F]-fluorodeoxyglucose positron emission tomography imaging of cerebral glucose metabolism (CMRglu); structured clinical assessments of blast exposure, psychiatric diagnoses, and PTSD symptoms; neurologic evaluations; and self-report scales of PCS, combat exposure, depression, sleep quality, and alcohol use. Veterans with versus without blast/impact-mTBIs exhibited reduced FA in the corpus callosum; reduced MPF values in subgyral, longitudinal, and cortical/subcortical WM tracts and gray matter (GM)/WM border regions (with a possible threshold effect beginning at 20 blast-mTBIs); reduced CMRglu in parietal, somatosensory, and visual cortices; and higher scores on measures of PCS, PTSD, combat exposure, depression, sleep disturbance, and alcohol use. Neuroimaging metrics did not differ between participants with versus without PTSD. Iraq and Afghanistan veterans with one or more blast-related mTBIs exhibit abnormalities of brain WM structural integrity and macromolecular organization and CMRglu that are not related to comorbid PTSD. These findings are congruent with recent neuropathological evidence of chronic brain injury in this cohort of veterans.


Subject(s)
Blast Injuries/complications , Brain Injuries/complications , Mental Disorders/etiology , Stress Disorders, Post-Traumatic/etiology , Veterans/psychology , Adult , Afghan Campaign 2001- , Anisotropy , Blast Injuries/pathology , Blast Injuries/psychology , Brain Injuries/pathology , Brain Injuries/psychology , Female , Humans , Iraq War, 2003-2011 , Male , Mental Disorders/pathology , Mental Disorders/psychology , Middle Aged , Nerve Fibers, Myelinated/pathology , Neuroimaging , Neuropsychological Tests , Stress Disorders, Post-Traumatic/pathology , Stress Disorders, Post-Traumatic/psychology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...