Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Neuropediatrics ; 52(6): 441-447, 2021 12.
Article in English | MEDLINE | ID: mdl-33445189

ABSTRACT

Aicardi-Goutières syndrome (AGS) is a monogenic type-I interferonopathy that results in neurologic injury. The systemic impact of sustained interferon activation is less well characterized. Liver inflammation is known to be associated with the neonatal form of AGS, but the incidence of AGS-related hepatitis across lifespan is unknown.We compared natural history data including liver enzyme levels with markers of inflammation, (liver-specific autoantibodies and interferon signaling gene expression[ISG] scores). Liver enzymes were classified as normal or elevated by the fold increase over the upper limit of normal (ULN). The highest increases were designated as hepatitis, defined as aspartate-aminotransferase or alanine-aminotransferase threefold ULN, or gamma-glutamyl transferase 2.5-fold ULN. A larger cohort was used to further characterize the longitudinal incidence of liver abnormalities and the association with age and genotype.Across the AGS cohort (n = 102), elevated liver enzymes were identified in 76 individuals (74.5%) with abnormalities at a level consistent with hepatitis in 29 individuals (28.4%). SAMHD1 mutations were less likely to be associated with hepatitis (log-rank test; p = 0.011). Hepatitis was associated with early-onset disease and microcephaly (log-rank test; microcephaly p = 0.0401, age onset p = 0.0355). While most subjects (n = 20/33) were found to have liver-specific autoantibodies, there was no association between the presence of autoantibodies or ISG scores with hepatitis-level enzyme elevations.In conclusion, all genotypes of AGS are associated with transient elevations of liver enzymes and the presence of liver-associated autoantibodies. This adds to our growing understanding of the systemic pathology AGS.


Subject(s)
Autoimmune Diseases of the Nervous System , Microcephaly , Nervous System Malformations , Autoimmune Diseases of the Nervous System/epidemiology , Autoimmune Diseases of the Nervous System/genetics , Humans , Infant, Newborn , Inflammation/complications , Nervous System Malformations/complications , Nervous System Malformations/epidemiology , Nervous System Malformations/genetics
3.
Hum Mutat ; 41(6): 1131-1137, 2020 06.
Article in English | MEDLINE | ID: mdl-32126152

ABSTRACT

Alexander disease results from gain-of-function mutations in the gene encoding glial fibrillary acidic protein (GFAP). At least eight GFAP isoforms have been described, however, the predominant alpha isoform accounts for ∼90% of GFAP protein. We describe exonic variants identified in three unrelated families with Type II Alexander disease that alter the splicing of GFAP pre-messenger RNA (mRNA) and result in the upregulation of a previously uncharacterized GFAP lambda isoform (NM_001363846.1). Affected members of Family 1 and Family 2 shared the same missense variant, NM_001363846.1:c.1289G>A;p.(Arg430His) while in Family 3 we identified a synonymous variant in the adjacent nucleotide, NM_001363846.1:c.1290C>A;p.(Arg430Arg). Using RNA and protein analysis of brain autopsy samples, and a mini-gene splicing reporter assay, we demonstrate both variants result in the upregulation of the lambda isoform. Our approach demonstrates the importance of characterizing the effect of GFAP variants on mRNA splicing to inform future pathophysiologic and therapeutic study for Alexander disease.


Subject(s)
Alexander Disease/genetics , Glial Fibrillary Acidic Protein/genetics , RNA Splicing , Adult , Aged , Child , Female , Humans , Male , Middle Aged , Mutation, Missense , Pedigree , Protein Isoforms/genetics , Young Adult
4.
Am J Med Genet A ; 182(1): 93-103, 2020 01.
Article in English | MEDLINE | ID: mdl-31622028

ABSTRACT

White matter (WM) signal abnormalities are demonstrated in various neurodevelopmental disorders on brain magnetic resonance imaging (MRI). The pattern of WM abnormalities can aid in the diagnostic process. This study aims to characterize the WM changes found in microdeletion/microduplication syndromes. Thirteen patients with neurodevelopmental disorders due to copy number variations were collected from a cohort of children with evidence of WM abnormalities on brain MRI, in two medical centers. A pediatric neuroradiologist blindly interpreted the MRI scans. Clinical and genetic findings were retrospectively extracted from the medical records. WM changes included: multifocal (10/13) periventricular (12/13) and subcortical (5/13) signal abnormalities and WM volume loss (6/13). Dysgenesis of the corpus callosum was depicted in 12/13. The main clinical features were: global developmental delay (13/13), hypotonia (11/13), epilepsy (10/13), dysmorphic features (9/13), microcephaly (6/13), short stature (6/13), and systemic involvement (6/13). We showed that different chromosomal micro-rearrangement syndromes share similar MRI patterns of nonspecific multifocal predominantly periventricular WM changes associated with corpus callosum dysgenesis with or without WM and gray matter loss. Hence, the association of these features in a patient evaluated for global developmental delay/intellectual disability suggests a chromosomal micro-rearrangement syndrome, and a chromosomal microarray analysis should be performed.


Subject(s)
Brain/metabolism , Chromosomes/genetics , DNA Copy Number Variations/genetics , Leukoencephalopathies/genetics , Abnormalities, Multiple/diagnostic imaging , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Adolescent , Agenesis of Corpus Callosum/diagnostic imaging , Agenesis of Corpus Callosum/genetics , Agenesis of Corpus Callosum/pathology , Body Dysmorphic Disorders/diagnostic imaging , Body Dysmorphic Disorders/genetics , Body Dysmorphic Disorders/pathology , Brain/diagnostic imaging , Brain/pathology , Cataract/congenital , Cataract/diagnostic imaging , Cataract/genetics , Cataract/pathology , Child , Cohort Studies , Cornea/abnormalities , Cornea/diagnostic imaging , Cornea/pathology , Corpus Callosum/diagnostic imaging , Corpus Callosum/metabolism , Corpus Callosum/pathology , Developmental Disabilities/diagnostic imaging , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Epilepsy/diagnostic imaging , Epilepsy/genetics , Epilepsy/pathology , Female , Genetic Predisposition to Disease , Humans , Hypogonadism/diagnostic imaging , Hypogonadism/genetics , Hypogonadism/pathology , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Intellectual Disability/pathology , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/pathology , Magnetic Resonance Imaging , Male , Microcephaly/diagnostic imaging , Microcephaly/genetics , Microcephaly/pathology , Muscle Hypotonia/diagnostic imaging , Muscle Hypotonia/genetics , Muscle Hypotonia/pathology , Optic Atrophy/diagnostic imaging
5.
Mol Genet Metab ; 125(4): 351-358, 2018 12.
Article in English | MEDLINE | ID: mdl-30219631

ABSTRACT

While pulmonary hypertension (PH) is a potentially life threatening complication of many inflammatory conditions, an association between Aicardi Goutières syndrome (AGS), a rare genetic cause of interferon (IFN) overproduction, and the development of PH has not been characterized to date. We analyzed the cardiac function of individuals with AGS enrolled in the Myelin Disorders Bioregistry Project using retrospective chart review (n = 61). Additional prospective echocardiograms were obtained when possible (n = 22). An IFN signature score, a marker of systemic inflammation, was calculated through the measurement of mRNA transcripts of type I IFN-inducible genes (interferon signaling genes or ISG). Pathologic analysis was performed as available from autopsy samples. Within our cohort, four individuals were identified to be affected by PH: three with pathogenic gain-of-function mutations in the IFIH1 gene and one with heterozygous TREX1 mutations. All studied individuals with AGS were noted to have elevated IFN signature scores (Mann-Whitney p < .001), with the highest levels in individuals with IFIH1 mutations (Mann-Whitney p < .0001). We present clinical and histologic evidence of PH in a series of four individuals with AGS, a rare interferonopathy. Importantly, IFIH1 and TREX1 may represent a novel cause of PH. Furthermore, these findings underscore the importance of screening all individuals with AGS for PH.


Subject(s)
Autoimmune Diseases of the Nervous System/complications , Exodeoxyribonucleases/genetics , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/pathology , Interferon-Induced Helicase, IFIH1/genetics , Mutation , Nervous System Malformations/complications , Phosphoproteins/genetics , Adolescent , Child , Humans , Infant , Infant, Newborn , Male , Prognosis , Prospective Studies , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...