Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048015

ABSTRACT

Of the ~25 directly imaged planets to date, all are younger than 500Myr and all but 6 are younger than 100Myr1. Eps Ind A (HD209100, HIP108870) is a K5V star of roughly solar age (recently derived as 3.7-5.7Gyr2 and 3.5 - 1.3 + 0.8 Gyr3). A long-term radial velocity trend 4,5 as well as an astrometric acceleration6,7 led to claims of a giant planet2,8,9 orbiting the nearby star (3.6384±0.0013pc10). Here we report JWST coronagraphic images that reveal a giant exoplanet which is consistent with these radial and astrometric measurements, but inconsistent with the previously claimed planet properties. The new planet has temperature ~275K, and is remarkably bright at 10.65µm and 15.50µm. Non-detections between 3.5-5µm indicate an unknown opacity source in the atmosphere, possibly suggesting a high metallicity, high carbon-to-oxygen ratio planet. The best-fit temperature of the planet is consistent with theoretical thermal evolution models, which are previously untested at this temperature range. The data indicates that this is likely the only giant planet in the system and we therefore refer to it as "b", despite it having significantly different orbital properties than the previously claimed planet "b".

2.
Nature ; 614(7949): 659-663, 2023 02.
Article in English | MEDLINE | ID: mdl-36623548

ABSTRACT

Transmission spectroscopy1-3 of exoplanets has revealed signatures of water vapour, aerosols and alkali metals in a few dozen exoplanet atmospheres4,5. However, these previous inferences with the Hubble and Spitzer Space Telescopes were hindered by the observations' relatively narrow wavelength range and spectral resolving power, which precluded the unambiguous identification of other chemical species-in particular the primary carbon-bearing molecules6,7. Here we report a broad-wavelength 0.5-5.5 µm atmospheric transmission spectrum of WASP-39b8, a 1,200 K, roughly Saturn-mass, Jupiter-radius exoplanet, measured with the JWST NIRSpec's PRISM mode9 as part of the JWST Transiting Exoplanet Community Early Release Science Team Program10-12. We robustly detect several chemical species at high significance, including Na (19σ), H2O (33σ), CO2 (28σ) and CO (7σ). The non-detection of CH4, combined with a strong CO2 feature, favours atmospheric models with a super-solar atmospheric metallicity. An unanticipated absorption feature at 4 µm is best explained by SO2 (2.7σ), which could be a tracer of atmospheric photochemistry. These observations demonstrate JWST's sensitivity to a rich diversity of exoplanet compositions and chemical processes.

3.
Nature ; 505(7485): 654-6, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24476888

ABSTRACT

Brown dwarfs--substellar bodies more massive than planets but not massive enough to initiate the sustained hydrogen fusion that powers self-luminous stars--are born hot and slowly cool as they age. As they cool below about 2,300 kelvin, liquid or crystalline particles composed of calcium aluminates, silicates and iron condense into atmospheric 'dust', which disappears at still cooler temperatures (around 1,300 kelvin). Models to explain this dust dispersal include both an abrupt sinking of the entire cloud deck into the deep, unobservable atmosphere and breakup of the cloud into scattered patches (as seen on Jupiter and Saturn). However, hitherto observations of brown dwarfs have been limited to globally integrated measurements, which can reveal surface inhomogeneities but cannot unambiguously resolve surface features. Here we report a two-dimensional map of a brown dwarf's surface that allows identification of large-scale bright and dark features, indicative of patchy clouds. Monitoring suggests that the characteristic timescale for the evolution of global weather patterns is approximately one day.

SELECTION OF CITATIONS
SEARCH DETAIL
...