Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766176

ABSTRACT

Recombinant adeno-associated viral vectors (rAAV) hold an intrinsic ability to stimulate homologous recombination (AAV-HR) and are the most used in clinical settings for in vivo gene therapy. However, rAAVs also integrate throughout the genome. Here, we describe DNA-RNA immunoprecipitation sequencing (DRIP-seq) in murine HEPA1-6 hepatoma cells and whole murine liver to establish the similarities and differences in genomic R-loop formation in a transformed cell line and intact tissue. We show enhanced AAV-HR in mice upon genetic and pharmacological upregulation of R-loops. Selecting the highly expressed Albumin gene as a model locus for genome editing in both in vitro and in vivo experiments showed that the R-loop prone, 3' end of Albumin was efficiently edited by AAV-HR, whereas the upstream R-loop-deficient region did not result in detectable vector integration. In addition, we found a positive correlation between previously reported off-target rAAV integration sites and R-loop enriched genomic regions. Thus, we conclude that high levels of R-loops, present in highly transcribed genes, promote rAAV vector genome integration. These findings may shed light on potential mechanisms for improving the safety and efficacy of genome editing by modulating R-loops and may enhance our ability to predict regions most susceptible to off-target insertional mutagenesis by rAAV vectors.

3.
bioRxiv ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37961428

ABSTRACT

G-quadruplexes (G4s) form throughout the genome and influence important cellular processes, but their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected, dual role for the dsDNA translocase HLTF in G4 metabolism. First, we find that HLTF is enriched at G4s in the human genome and suppresses G4 accumulation throughout the cell cycle using its ATPase activity. This function of HLTF affects telomere maintenance by restricting alternative lengthening of telomeres, a process stimulated by G4s. We also show that HLTF and MSH2, a mismatch repair factor that binds G4s, act in independent pathways to suppress G4s and to promote resistance to G4 stabilization. In a second, distinct role, HLTF restrains DNA synthesis upon G4 stabilization by suppressing PrimPol-dependent repriming. Together, the dual functions of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.

4.
Nat Struct Mol Biol ; 30(3): 348-359, 2023 03.
Article in English | MEDLINE | ID: mdl-36864174

ABSTRACT

Transcription-replication collisions (TRCs) are crucial determinants of genome instability. R-loops were linked to head-on TRCs and proposed to obstruct replication fork progression. The underlying mechanisms, however, remained elusive due to the lack of direct visualization and of non-ambiguous research tools. Here, we ascertained the stability of estrogen-induced R-loops on the human genome, visualized them directly by electron microscopy (EM), and measured R-loop frequency and size at the single-molecule level. Combining EM and immuno-labeling on locus-specific head-on TRCs in bacteria, we observed the frequent accumulation of DNA:RNA hybrids behind replication forks. These post-replicative structures are linked to fork slowing and reversal across conflict regions and are distinct from physiological DNA:RNA hybrids at Okazaki fragments. Comet assays on nascent DNA revealed a marked delay in nascent DNA maturation in multiple conditions previously linked to R-loop accumulation. Altogether, our findings suggest that TRC-associated replication interference entails transactions that follow initial R-loop bypass by the replication fork.


Subject(s)
DNA Replication , RNA , Humans , DNA/chemistry , DNA-Binding Proteins/metabolism , Chromosomes/metabolism , Genomic Instability
5.
Nature ; 613(7942): 187-194, 2023 01.
Article in English | MEDLINE | ID: mdl-36544021

ABSTRACT

R-loops are RNA-DNA-hybrid-containing nucleic acids with important cellular roles. Deregulation of R-loop dynamics can lead to DNA damage and genome instability1, which has been linked to the action of endonucleases such as XPG2-4. However, the mechanisms and cellular consequences of such processing have remained unclear. Here we identify a new population of RNA-DNA hybrids in the cytoplasm that are R-loop-processing products. When nuclear R-loops were perturbed by depleting the RNA-DNA helicase senataxin (SETX) or the breast cancer gene BRCA1 (refs. 5-7), we observed XPG- and XPF-dependent cytoplasmic hybrid formation. We identify their source as a subset of stable, overlapping nuclear hybrids with a specific nucleotide signature. Cytoplasmic hybrids bind to the pattern recognition receptors cGAS and TLR3 (ref. 8), activating IRF3 and inducing apoptosis. Excised hybrids and an R-loop-induced innate immune response were also observed in SETX-mutated cells from patients with ataxia oculomotor apraxia type 2 (ref. 9) and in BRCA1-mutated cancer cells10. These findings establish RNA-DNA hybrids as immunogenic species that aberrantly accumulate in the cytoplasm after R-loop processing, linking R-loop accumulation to cell death through the innate immune response. Aberrant R-loop processing and subsequent innate immune activation may contribute to many diseases, such as neurodegeneration and cancer.


Subject(s)
Cytoplasm , DNA , Innate Immunity Recognition , Nucleic Acid Heteroduplexes , R-Loop Structures , RNA , Humans , Apoptosis , Cytoplasm/immunology , Cytoplasm/metabolism , DNA/chemistry , DNA/immunology , DNA Helicases/genetics , DNA Helicases/metabolism , Genes, BRCA1 , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , Mutation , Neoplasms , Nucleic Acid Heteroduplexes/chemistry , Nucleic Acid Heteroduplexes/immunology , R-Loop Structures/immunology , RNA/chemistry , RNA/immunology , RNA Helicases/genetics , RNA Helicases/metabolism , Spinocerebellar Ataxias/genetics
6.
Sci Rep ; 12(1): 13373, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35927309

ABSTRACT

Recent studies revealed classes of recurrent DNA double-strand breaks (DSBs) in neural stem/progenitor cells, including transcription-associated, promoter-proximal breaks and recurrent DSB clusters in late-replicating, long neural genes that may give rise to somatic brain mosaicism. The mechanistic factors promoting these different classes of DSBs in neural stem/progenitor cells are not understood. Here, we elucidated the genome-wide landscape of RNA:DNA hybrid structures called "R-loops" in primary neural stem/progenitor cells undergoing aphidicolin-induced, mild replication stress to assess the potential contribution of R-loops to the different, recurrent classes of DNA break "hotspots". We find that R-loops in neural stem/progenitor cells undergoing mild replication stress are present primarily in early-replicating, transcribed regions and in genes with promoter GC skew that are associated with cell lineage-specific processes. Surprisingly, most long, neural genes that form recurrent DSB clusters do not show R-loop formation under conditions of mild replication stress. Our findings are consistent with a role of R-loop-associated processes in promoter-proximal DNA break formation in highly transcribed, early replicating regions but suggest that R-loops do not drive replication stress-induced, recurrent DSB cluster formation in most long, neural genes.


Subject(s)
Neural Stem Cells , R-Loop Structures , DNA/genetics , DNA Breaks, Double-Stranded , DNA Repair
7.
Methods Mol Biol ; 2528: 381-410, 2022.
Article in English | MEDLINE | ID: mdl-35704206

ABSTRACT

R-loops are three-stranded nucleic acid structures, comprising an RNA-DNA hybrid and a displaced strand of ssDNA. R-loops have important physiological roles in cells, but deregulation of R-loop dynamics can also have harmful cellular outcomes. The genome-wide mapping of R-loops offers an unbiased approach to study R-loop biology in a wide range of contexts. Here we present a protocol to sequence RNA-DNA hybrids genome-wide with strand-specificity and high resolution. We also include information on how to prepare and incorporate into the workflow appropriate internal spike-in standards which facilitate accurate normalization of the sequencing signal, thereby providing quantitative insights into R-loop formation between different experimental samples.


Subject(s)
R-Loop Structures , RNA , Chromosome Mapping , DNA/chemistry , DNA/genetics , Immunoprecipitation , RNA/chemistry , RNA/genetics
8.
J Cell Biol ; 220(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34232287

ABSTRACT

R-loops are three-stranded nucleic acid structures with both physiological and pathological roles in cells. R-loop imaging generally relies on detection of the RNA-DNA hybrid component of these structures using the S9.6 antibody. We show that the use of this antibody for imaging can be problematic because it readily binds to double-stranded RNA (dsRNA) in vitro and in vivo, giving rise to nonspecific signal. In contrast, purified, catalytically inactive human RNase H1 tagged with GFP (GFP-dRNH1) is a more specific reagent for imaging RNA-DNA hybrids. GFP-dRNH1 binds strongly to RNA-DNA hybrids but not to dsRNA oligonucleotides in fixed human cells and is not susceptible to binding endogenous RNA. Furthermore, we demonstrate that purified GFP-dRNH1 can be applied to fixed cells to detect hybrids after their induction, thereby bypassing the need for cell line engineering. GFP-dRNH1 therefore promises to be a versatile tool for imaging and quantifying RNA-DNA hybrids under a wide range of conditions.


Subject(s)
DNA/metabolism , Inverted Repeat Sequences , RNA, Double-Stranded/metabolism , Recombinant Fusion Proteins/metabolism , Ribonuclease H/metabolism , Staining and Labeling/methods , Antibodies/chemistry , Antibodies/metabolism , BRCA1 Protein/antagonists & inhibitors , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Cloning, Molecular , DNA/chemistry , DNA/ultrastructure , DNA Helicases/antagonists & inhibitors , DNA Helicases/genetics , DNA Helicases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Gene Expression , Genes, Reporter , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/metabolism , Humans , Multifunctional Enzymes/antagonists & inhibitors , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , Nucleic Acid Hybridization , Optical Imaging/methods , Protein Binding , RNA Helicases/antagonists & inhibitors , RNA Helicases/genetics , RNA Helicases/metabolism , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/ultrastructure , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Recombinant Fusion Proteins/genetics , Ribonuclease H/genetics
9.
Nucleic Acids Res ; 48(14): e84, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32544226

ABSTRACT

R-loops are dynamic, co-transcriptional nucleic acid structures that facilitate physiological processes but can also cause DNA damage in certain contexts. Perturbations of transcription or R-loop resolution are expected to change their genomic distribution. Next-generation sequencing approaches to map RNA-DNA hybrids, a component of R-loops, have so far not allowed quantitative comparisons between such conditions. Here, we describe quantitative differential DNA-RNA immunoprecipitation (qDRIP), a method combining synthetic RNA-DNA-hybrid internal standards with high-resolution, strand-specific sequencing. We show that qDRIP avoids biases inherent to read-count normalization by accurately profiling signal in regions unaffected by transcription inhibition in human cells, and by facilitating accurate differential peak calling between conditions. We also use these quantitative comparisons to make the first estimates of the absolute count of RNA-DNA hybrids per cell and their half-lives genome-wide. Finally, we identify a subset of RNA-DNA hybrids with high GC skew which are partially resistant to RNase H. Overall, qDRIP allows for accurate normalization in conditions where R-loops are perturbed and for quantitative measurements that provide previously unattainable biological insights.


Subject(s)
DNA/metabolism , Immunoprecipitation/methods , Nucleic Acid Hybridization , R-Loop Structures , RNA/metabolism , Animals , Cell Line , Drosophila/cytology , Gene Library , Genome , Half-Life , HeLa Cells , Humans , Polymerase Chain Reaction , Ribonuclease H , Sonication , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...