Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31505219

ABSTRACT

Embryonic turtles have four distinct vascular beds that separately perfuse the developing embryo's body and the extra-embryonic yolk sac, amnion and chorioallantoic membrane (CAM). The mechanisms enabling differential regulation of blood flow through these separate beds, in order to meet the varying demands of the embryo during development, is of current interest. The present investigation followed the changes in blood flow distribution during an acute exposure to hypoxia and after α-adrenergic blockade. We monitored heart rate (fH), mean arterial pressure (Pm), and determined relative blood flow distribution (%Q̇sys) using colored microspheres. At 70% and 90% of the incubation period hypoxia elicited a bradycardia without changing Pm while %Q̇sys was altered only at 70%, increasing to the CAM and liver. Blockade of α-adrenergic responses with phentolamine did not change fH or Pm but increased %Q̇sys to the shell. These results show the capacity of embryos to redistribute cardiac output during acute hypoxia, however α-adrenergic receptors seemed to play a relatively small role in embryonic cardiovascular regulation.


Subject(s)
Adrenergic Agents/pharmacology , Blood Circulation/physiology , Embryo, Nonmammalian/physiopathology , Hypoxia/physiopathology , Turtles/embryology , Turtles/physiology , Animals , Arterial Pressure/drug effects , Blood Circulation/drug effects , Embryo, Nonmammalian/drug effects , Heart Rate/drug effects , Regional Blood Flow/drug effects
2.
Environ Sci Technol ; 53(16): 9895-9904, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31343865

ABSTRACT

Deepwater Horizon crude oil is comprised of polycyclic aromatic hydrocarbons that cause a number of cardiotoxic effects in marine fishes across all levels of biological organization and at different life stages. Although cardiotoxic impacts have been widely reported, the mechanisms underlying these impairments in adult fish remain understudied. In this study, we examined the impacts of crude oil on cardiomyocyte contractility and electrophysiological parameters in freshly isolated ventricular cardiomyocytes from adult mahi-mahi (Coryphaena hippurus). Cardiomyocytes directly exposed to oil exhibited reduced contractility over a range of environmentally relevant concentrations (2.8-12.9 µg l-1∑PAH). This reduction in contractility was most pronounced at higher stimulation frequencies, corresponding to the upper limits of previously measured in situ mahi heart rates. To better understand the mechanisms underlying impaired contractile function, electrophysiological studies were performed, which revealed oil exposure prolonged cardiomyocyte action potentials and disrupted potassium cycling (9.9-30.4 µg l-1∑PAH). This study is the first to measure cellular contractility in oil-exposed cardiomyocytes from a pelagic fish. Results from this study contribute to previously observed impairments to heart function and whole-animal exercise performance in mahi, underscoring the advantages of using an integrative approach in examining mechanisms of oil-induced cardiotoxicity in marine fish.


Subject(s)
Perciformes , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals
SELECTION OF CITATIONS
SEARCH DETAIL