Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(25): eadj0720, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38896627

ABSTRACT

Mutations in the transcription factors encoded by PHOX2B or LBX1 correlate with congenital central hypoventilation disorders. These conditions are typically characterized by pronounced hypoventilation, central apnea, and diminished chemoreflexes, particularly to abnormally high levels of arterial PCO2. The dysfunctional neurons causing these respiratory disorders are largely unknown. Here, we show that distinct, and previously undescribed, sets of medullary neurons coexpressing both transcription factors (dB2 neurons) account for specific respiratory functions and phenotypes seen in congenital hypoventilation. By combining intersectional chemogenetics, intersectional labeling, lineage tracing, and conditional mutagenesis, we uncovered subgroups of dB2 neurons with key functions in (i) respiratory tidal volumes, (ii) the hypercarbic reflex, (iii) neonatal respiratory stability, and (iv) neonatal survival. These data provide functional evidence for the critical role of distinct medullary dB2 neurons in neonatal respiratory physiology. In summary, our work identifies distinct subgroups of dB2 neurons regulating breathing homeostasis, dysfunction of which causes respiratory phenotypes associated with congenital hypoventilation.


Subject(s)
Homeodomain Proteins , Hypoventilation , Medulla Oblongata , Neurons , Transcription Factors , Hypoventilation/congenital , Hypoventilation/genetics , Animals , Neurons/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Medulla Oblongata/metabolism , Sleep Apnea, Central/genetics , Phenotype , Humans
2.
Front Pharmacol ; 11: 623, 2020.
Article in English | MEDLINE | ID: mdl-32477119

ABSTRACT

Comorbidity between drug abuse and post-traumatic stress disorder (PTSD), a stress-related dysregulation of fear responses, is very high. While some drugs are known to increase fear and anxiety, there are only few data regarding interactions between voluntary drug consumption and fear memory. The spontaneous chronic consumption of either alcohol or cocaine under a 3-week free-choice progressive paradigm of alcohol (3/6/10%) or cocaine (0.2/0.4/0.6 mg/ml), was assessed in VGV transgenic mice, having full 5-HT2C receptor editing and displaying PTSD-like behaviors. The consequences of these drug consumptions on the potentiated contextual and cued fear conditioning responses of VGV mice were assessed. The effects of drugs on hippocampal brain-derived neurotrophic factor (Bdnf) mRNA were measured as its expression was previously found to be decreased in VGV mice. Chronic alcohol consumption was similar in WT and VGV mice. In the alcohol condition, fear acquisition was not different at the end of the learning session and cue-fear extinction was facilitated. Regarding cocaine, in contrast to WT mice, VGV mice did not increase their drug consumption along with increasing doses, an effect that might be related with enhanced drug stimuli discrimination via increased 5-HT2C receptors. Cocaine-intake VGV mice did not display the contextual fear generalization usually observed in control VGV mice. In addition, Bdnf expression was upregulated after either chronic alcohol or cocaine intake. Altogether, these results suggest that both chronic alcohol and cocaine voluntary oral consumptions can exert some therapeutic-like effects in a mutant model of PTSD predisposition.

SELECTION OF CITATIONS
SEARCH DETAIL
...