Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; 77(8): 860-872, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37604114

ABSTRACT

It is conventionally expected that the performance of existing gas sensors may degrade in the field compared to laboratory conditions because (i) a sensor may lose its accuracy in the presence of chemical interferences and (ii) variations of ambient conditions over time may induce sensor-response fluctuations (i.e., drift). Breaking this status quo in poor sensor performance requires understanding the origins of design principles of existing sensors and bringing new principles to sensor designs. Existing gas sensors are single-output (e.g., resistance, electrical current, light intensity, etc.) sensors, also known as zero-order sensors (Karl Booksh and Bruce R. Kowalski, Analytical Chemistry, DOI: 10.1021/ac00087a718). Any zero-order sensor is undesirably affected by variable chemical background and sensor drift that cannot be distinguished from the response to an analyte. To address these limitations, we are developing multivariable gas sensors with independent responses, which are first-order analytical instruments. Here, we demonstrate self-correction against drift in two types of first-order gas sensors that operate in different portions of the electromagnetic spectrum. Our radiofrequency sensors utilize dielectric excitation of semiconducting metal oxide materials on the shoulder of their dielectric relaxation peak and achieve self-correction of the baseline drift by operation at several frequencies. Our photonic sensors utilize nanostructured sensing materials inspired by Morpho butterflies and achieve self-correction of the baseline drift by operation at several wavelengths. These principles of self-correction for drift effects in first-order sensors open opportunities for diverse emerging monitoring applications that cannot afford frequent periodic maintenance that is typical of traditional analytical instruments.

2.
Sci Rep ; 11(1): 13950, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230532

ABSTRACT

Gadolinium based contrast agents (GBCA) are used to image patients using magnetic resonance (MR) imaging. In recent years, there has been controversy around gadolinium retention after GBCA administration. We sought to evaluate the potential toxicity of gadolinium in the rat brain up to 1-year after repeated gadodiamide dosing and tissue retention kinetics after a single administration. Histopathological and ultrastructural transmission electron microscopy (TEM) analysis revealed no findings in rats administered a cumulative dose of 12 mmol/kg. TEM-energy dispersive X-ray spectroscopy (TEM-EDS) localization of gadolinium in the deep cerebellar nuclei showed ~ 100 nm electron-dense foci in the basal lamina of the vasculature. Laser ablation-ICP-MS (LA-ICP-MS) showed diffuse gadolinium throughout the brain but concentrated in perivascular foci of the DCN and globus pallidus with no observable tissue injury or ultrastructural changes. A single dose of gadodiamide (0.6 mmol/kg) resulted in rapid cerebrospinal fluid (CSF) and blood clearance. Twenty-weeks post administration gadolinium concentrations in brain regions was reduced by 16-72-fold and in the kidney (210-fold), testes (194-fold) skin (44-fold), liver (42-fold), femur (6-fold) and lung (64-fold). Our findings suggest that gadolinium does not lead to histopathological or ultrastructural changes in the brain and demonstrate in detail the kinetics of a human equivalent dose over time in a pre-clinical model.


Subject(s)
Cells/ultrastructure , Gadolinium DTPA/administration & dosage , Gadolinium DTPA/pharmacology , Gadolinium/metabolism , Animals , Brain/drug effects , Brain/metabolism , Cells/drug effects , Cerebellum/drug effects , Cerebellum/ultrastructure , Dose-Response Relationship, Drug , Gadolinium DTPA/blood , Gadolinium DTPA/cerebrospinal fluid , Kidney/drug effects , Kidney/metabolism , Male , Rats, Sprague-Dawley , Spectrophotometry, Atomic , Time Factors
3.
Radiology ; 282(3): 743-751, 2017 03.
Article in English | MEDLINE | ID: mdl-27673510

ABSTRACT

Purpose To measure the levels of gadolinium present in the rat brain 1 and 20 weeks after dosing with contrast agent and to determine if there are any histopathologic sequelae. Materials and Methods The study was approved by the GE Global Research Center Institutional Animal Care and Use Committee. Absolute gadolinium levels were quantified in the blood and brains of rats 1 week after dosing and 20 weeks after dosing with up to 20 repeat doses of gadodiamide (cumulative dose, 12 mmol per kilogram of body weight) by using inductively coupled plasma-mass spectrometry. Treatment groups (n = 6 rats per group) included low-dosage and high-dosage gadodiamide and osmolality-matched saline controls. Brain sections were submitted (blinded) for standard toxicology assessment per Registry of Industrial Toxicology Animal data guidelines. Analysis of variance and Mann-Whitney U tests with post hoc correction were used to assess differences in absolute gadolinium levels and percentage of injected dose, respectively. Results Dose-dependent low levels of gadolinium were detected in the brain, a mean ± standard deviation of 2.49 nmol per gram of brain tissue ± 0.30 or 0.00019% of the injected dose 1 week after dosing. This diminished by approximately 50% (to 1.38 nmol per gram of brain tissue ± 0.10 or 0.00011% of the injected dose) 20 weeks after dosing. As a percentage of injected dose, the levels of gadolinium measured were comparable between different doses, indicating that mechanisms of uptake and elimination were not saturated at the tested doses. There were no histopathologic findings associated with the levels of gadolinium measured. Conclusion Low levels of gadolinium are present in the brain after repeat dosing with gadodiamide, which is partially cleared over 20 weeks with no detectable neurotoxicity.


Subject(s)
Brain/metabolism , Contrast Media/pharmacokinetics , Gadolinium DTPA/pharmacokinetics , Animals , Brain/ultrastructure , Dose-Response Relationship, Drug , Mass Spectrometry , Rats , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...