Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Anal Chem ; 88(7): 4130-9, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26971559

ABSTRACT

Electrospray ionization (ESI) of solution mixtures often generates complex mass spectra, even following liquid chromatography (LC), due to analyte multiple charging. Multiple charge state distributions can lead to isobaric interferences, mass spectral congestion, and ambiguous ion identification. As a consequence, data interpretation increases in complexity. Several charge reduction mass spectrometry (MS) approaches have been previously developed to reduce the average charge state of gaseous ions; however, all of these techniques have been restricted to direct infusion MS. In this study, synthetic polyols and surfactants separated by liquid chromatography and ionized by positive mode ESI have been subjected to polonium-210 α-particle radiation to reduce the average charge state to singly charged cations prior to mass analysis. LC/MS analysis of 5000 molecular weight poly(ethylene glycol) (PEG5000) generated an average charge state of 5.88+; whereupon, liquid chromatography/electrospray ionization/charge reduction/mass spectrometry (LC/CR/MS) analysis of PEG 5000 generated an average charge state of 1.00+. The PEG5000 results demonstrated a decrease in spectral complexity and enabled facile interpretation. Other complex solution mixtures representing specific MS challenges (i.e., competitive ionization and isobaric ion overlap) were explored and analyzed with LC/CR/MS to demonstrate the benefits of coupling LC to CR/MS. For example, polyol information related to initiator, identity/relative amount of monomer, and estimated molecular weight was characterized in random and triblock ethylene oxide/propylene oxide polyols using LC/CR/MS. LC/CR/MS is a new analytical technique for the analysis of complex mixtures.

2.
J Am Chem Soc ; 134(50): 20388-95, 2012 Dec 19.
Article in English | MEDLINE | ID: mdl-23181692

ABSTRACT

The heat of adsorption and sticking probability of methanol were measured on clean Pt(111) at 100, 150, and 210 K and on oxygen-precovered Pt(111) at 150 K by single-crystal adsorption calorimetry (SCAC). On clean Pt(111) at 100 K, the heat of methanol adsorption was found to be 60.5 ± 0.8 kJ/mol in the limit of low coverage, resulting in a standard enthalpy of formation (ΔH(f)°) of CH(3)OH(ad) of -263 ± 0.8 kJ/mol. The results at 150 and 210 K on clean Pt(111) were indistinguishable from the energetics measured at 100 K in the same coverage range. Calorimetry of methanol on oxygen-precovered Pt(111) at 150 K yielded the energetics of adsorbed methoxy, giving ΔH(f)°[CH(3)O(ad)] = -170 ± 10 kJ/mol and a CH(3)O-Pt(111) bond enthalpy of 187 ± 11 kJ/mol. By use of these enthalpies, the dissociation of adsorbed methanol on Pt(111) to form methoxy and a hydrogen adatom is found to be uphill by +57 kJ/mol. At coverages below 0.2 monolayer (ML), the sticking probability for methanol on both surfaces at or below 150 K was >0.95. At 210 K, ∼80% of the methanol beam pulse transiently adsorbs to clean Pt(111) with a surface residence time of 238 ms and heat of adsorption of 61.2 ± 2.0 kJ/mol, giving a prefactor for methanol desorption of 4 × 10(15±0.5) s(-1). These measured energetics for methoxy and methanol were compared to density functional theory (DFT) calculations from previous literature, showing DFT to routinely underestimate the bond energy of both adsorbed methanol and methoxy by 15-52 kJ/mol.

3.
Article in English | MEDLINE | ID: mdl-21370982

ABSTRACT

Adsorption microcalorimetry measures the energetics of adsorbate-surface interactions and can be performed by use of several different techniques. This review focuses on three methods: single-crystal adsorption calorimetry (SCAC), isothermal titration calorimetry (ITC), and electrochemical adsorption calorimetry. SCAC is a uniquely powerful technique that has been applied to a variety of atoms and molecules that represent a large variety of well-defined adsorbate species on a wide range of single-crystal surfaces. ITC and electrochemical microcalorimetry are useful for studying adsorption energies in liquid solutions (on surfaces of suspended powders) and at the electrode-electrolyte interface, respectively. Knowledge of the energetics of adsorbate formation is valuable to ongoing research in many fields, including catalysis, fuel cells, and solar power. In addition, calorimetric measurements serve as benchmarks for the improvement of computational approaches to understanding surface chemistry. We review instrumentation and applications, emphasizing our own work.

4.
Rev Sci Instrum ; 81(2): 024102, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20192507

ABSTRACT

The adsorption of atoms and molecules on single crystal surfaces allows one to produce well-characterized atomic, molecular, or dissociated adsorbates. Microcalorimetric measurement of the resulting adsorption energies, i.e., single crystal adsorption calorimetry, allows determination of the standard enthalpies of formation of these adsorbates. Methods are described for making an improved heat detector for such measurements, which greatly improves the signal-to-noise ratio, particularly at low temperatures (down to 100 K). The heat detector is an adaptation of a previously introduced design, based on a metallized pyroelectric polymer (beta-polyvinylidene fluoride), which is pressed against the back of a single crystal during measurement but removed during sample preparation and annealing. The improvement is achieved by selectively etching the metal coating of the polymer, thus reducing the pyro- and piezoelectric noise from all nonessential regions of the polymer. We, furthermore, describe how to achieve a better thermal contact between the sample and the pyroelectric polymer, without increasing the thermal mass of the detector, resulting in significantly improved sensitivities for both 1 and 127 microm thick samples. The result is a detector which, using 1 microm samples, is approximately 40 times more sensitive at 100 K than the traditional polymer-based detector, showing a pulse-to-pulse standard deviation in the heat of adsorption of just 1.3 kJ/mol with gas pulses containing only 1.1% of a monolayer onto Pt(111), for which 1 ML (monolayer) is 1.5x10(15) species/cm(2). For measurements at 300 K, where especially pyroelectric noise is likely of less concern, the new design improves the sensitivity 3.6-fold compared to the traditional detector. These improvements are furthermore used to propose a new detector design that is able to measure heats of adsorption on samples as thick as 127 microm with reasonable sensitivity.

5.
J Am Chem Soc ; 131(38): 13844-51, 2009 Sep 30.
Article in English | MEDLINE | ID: mdl-19736992

ABSTRACT

We report the first collision-induced dissociation tandem mass spectrometry (CID MS/MS) of a thiolate-protected Au nanoparticle that has a crystallographically determined structure. CID spectra assert that dissociation pathways for the mixed monolayer Na(x)Au(25)(SC(2)H(4)Ph)(18-y)(S(C(2)H(4)O)(5)CH(3))(y) centrally involve the semi-ring Au(2)L(3) coordination (L = some combination of the two thiolate ligands) that constitutes the nanoparticle's protecting structure. The data additionally confirm charge state assignments in the mass spectra. Prominent among the fragments is [Na(2)AuL(2)](1+), one precursor of which is identified as another nanoparticle fragment in the higher m/z region. Another detected fragment, [Na(2)Au(2)L(3)](1+), represents a mass loss equivalent to an entire semi-ring, whereas others suggest involvement (fragmentation/rearrangement) of multiple semi-rings, e.g., [NaAu(3)L(3)](1+) and [NaAu(4)L(4)](1+). The detailed dissociation/rearrangement mechanisms of these species are not established, but they are observed in other mass spectrometry experiments, including those under non-CID conditions, namely, electrospray ionization mass spectrometry (ESI-MS) with both time-of-flight (TOF) and FT-ICR analyzers. The latter, previously unreported results show that even soft ionization sources can result in Au nanoparticle fragmentation, including that yielding Au(4)L(4) in ESI-TOF of a much larger thiolate-protected Au(144) nanoparticle under non-CID conditions.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Sulfhydryl Compounds/chemistry , Crystallography, X-Ray , Tandem Mass Spectrometry
6.
Langmuir ; 25(13): 7704-10, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19518136

ABSTRACT

Monolayer-protected clusters were prepared by procedures like those yielding Au25L18 (where L=-SCH2CH2Ph=-SC2Ph) but using, instead, mixtures of Au and Pd salts, as starting materials, with the intent of creating and characterizing Au25-xMxL18 clusters. Isolation of small nanoparticle product followed by partial ligand exchange to introduce thiolated poly(ethylene glycol) (SPEG=-S(CH2CH2O)5CH3) into the nanoparticle ligand shell enabled characterization of the Au25-xMxL18 content by positive mode electrospray ionization mass spectrometry (ESI-MS). For synthetic feed mole ratios of Au:Pd of 9:1 and 13:12, electrospray spectra of the PEGylated MPCs showed that the reaction and isolation produce a mixture of Au25(SC2Ph)18 and a mono-Pd nanoparticle Au24Pd(SC2Ph)18. A higher proportion of the mono-Pd nanoparticle is produced by the 13:12 mole ratio, and also when the thiol:metal ratio was lowered, according to ESI-MS and MALDI-TOF-MS. As the nanoparticle mixture is enriched, by solvent fractionations, in Au24Pd(SC2Ph)18 relative to Au25(SC2Ph)18, the distinctive optical and electrochemical signatures of Au25(SC2Ph)18 are replaced by Au24Pd(SC2Ph)18 nanoparticle responses, which are very different, even though only one Au atom is replaced by a Pd atom.


Subject(s)
Gold/chemistry , Palladium/chemistry , Ligands , Mass Spectrometry , Surface Properties
7.
J Am Chem Soc ; 129(51): 16209-15, 2007 Dec 26.
Article in English | MEDLINE | ID: mdl-18034488

ABSTRACT

New approaches to electrospray ionization mass spectrometry (ESI-MS)-with exact compositional assignments-of small (Au25) nanoparticles with uniform and mixed protecting organothiolate monolayers are described. The results expand the scope of analysis and reveal a rich chemistry of ionization behavior. ESI-MS of solutions of phenylethanethiolate monolayer-protected gold clusters (MPCs), Au25(SC2Ph)18, containing alkali metal acetate salts (MOAc) produce spectra in which, for Na+, K+, Rb+, and Cs+ acetates, the dominant species are MAu25(SC2Ph)182+ and M2Au25(SC2Ph)182+. Li+ acetates caused ligand loss. This method was extended to the analysis of Au25 MPCs with mixed monolayers, where thiophenolate (-SPh), hexanethiolate (-SC6), or biotinylated (-S-PEG-biotin) ligands had been introduced by ligand exchange. In negative-mode ESI-MS, no added reagents were needed in order to observe Au25(SC2Ph)18- and to analyze mixed monolayer Au25 MPCs prepared by ligand exchange with 4-mercaptobenzoic acid, HSPhCOOH, which gave spectra through deprotonation of the carboxylic acids. Adducts of tetraoctylammonium (Oct4N+) with -SPhCOO- sites were also observed. Mass spectrometry is the only method that has demonstrated capacity for measuring the exact distribution of ligand-exchange products. The possible origins of the different Au25 core charges (1-, 0, 1+, 2+) observed during electrospray ionization are discussed.


Subject(s)
Nanoparticles , Spectrometry, Mass, Electrospray Ionization/methods
9.
Anal Chem ; 77(17): 5726-34, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16131088

ABSTRACT

Infrared multiphoton dissociation (IRMPD) in a quadrupole ion trap coupled to high-performance liquid chromatography allows the selective dissociation of phosphorylated peptides in mixtures following chromatographic separation. This method is shown to be effective for differentiation of phosphorylated peptides from unphosphorylated ones; only the abundances of the phosphorylated species are appreciably decreased following exposure to 125 ms of 10.6-microm radiation. This LC-IRMPD-MS strategy is demonstrated for a mock mixture of peptides and a tryptic digest of alphaS1-casein. The ability of this technique to differentiate peptides based on phosphorylation state is unaffected by whether the peptides are protonated or sodium-cationized.


Subject(s)
Chromatography, High Pressure Liquid/methods , Ions/chemistry , Peptides/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Amino Acid Sequence , Caseins/chemistry , Caseins/metabolism , Molecular Sequence Data , Phosphorylation , Trypsin/metabolism
10.
Inorg Chem ; 44(18): 6415-24, 2005 Sep 05.
Article in English | MEDLINE | ID: mdl-16124822

ABSTRACT

Electrospray ionization (ESI) quadrupole ion trap mass spectrometry (QIT-MS) and collisionally activated dissociation (CAD) were used to evaluate the rare-earth binding properties of two hydrophobic carbamoylmethylphosphine oxide (CMPO) ligands, the normal bidentate variety, (t-BuC6H4)2P(O)CH2C(O)N(i-Bu)2 (A), a new potentially tridentate extractant, (t-BuC6H4)2P(O)CH[CH2C(O)N(i-Bu)2]C(O)N(i-Bu)2 (B), and tributyl phosphate. The mass spectral results obtained from analysis of 1% HNO3/methanol solution containing the ligands and dissolved lanthanide salts reveal that the favorable stoichiometries of the ligand/metal/nitrate complexes are 2:1:2 for the bidentate ligand A, 1:1:2 for the tridentate ligand B, and 3:1:2 for the monodentate tributyl phosphate. These observed stoichiometries correlate with the number of available binding sites on each ligand as well as with potential steric effects. Energy-variable collisionally activated dissociation experiments showed that for the 2:1:2 complexes involving ligand A or B, as the ionic radius of the bound metal decreased, the removal of nitric acid required less energy and resulted in less extensive spontaneous solvent coordination. This experimental trend suggests that, as the ionic radius of the lanthanide ion decreases, a pair of the carbamoylmethylphosphine ligands is able to more completely solvate the bound metal ion thereby weakening the nitrate-metal interaction.

11.
J Am Soc Mass Spectrom ; 15(11): 1581-92, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15519225

ABSTRACT

Dissociation of protonated peptides via infrared multiphoton dissociation (IRMPD) provides more extensive sequence information than is obtained with collisionally activated dissociation (CAD) in a quadrupole ion trap due to the lack of the CAD low m/z cutoff and the ability to form secondary and higher order fragments with the non-resonant photoactivation technique. In addition, IRMPD is shown to be useful for the selective dissociation of phosphopeptides over those which are not phosphorylated because the greater photon absorption efficiency of the phosphorylated peptides leads to their more rapid dissociation. Finally, the selectivity of the IRMPD technique for phosphorylated species in complex mixtures is confirmed with the analysis of a mock peptide mixture and a tryptic digest of alpha-casein.


Subject(s)
Infrared Rays , Phosphopeptides/chemistry , Photons , Sequence Analysis, Protein/methods , Spectrometry, Mass, Electrospray Ionization/methods , Amino Acid Sequence , Molecular Sequence Data
12.
J Am Soc Mass Spectrom ; 14(10): 1148-57, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14530095

ABSTRACT

Energy-variable collisionally activated dissociation (CAD) was used to analyze noncovalent interactions of protonated peptide/polyether complexes in a quadrupole ion trap complexes were formed with a series of four polyether host molecules and thirteen peptide molecules. Comparison of dissociation thresholds revealed correlations between the gas-phase basicities of the peptides and polyether molecules and the onset of dissociation. The dissociation thresholds of complexes containing the tripeptides or pentapeptides were inversely proportional to the gas-phase basicities of the sites of protonation of the peptides. Intramolecular hydrogen bonding of the pentapeptides affected the observed dissociation thresholds as well. The dissociation thresholds also scaled proportionally to the gas-phase basicities of the polyethers in the complexes, and the importance of the conformational flexibility of the polyether ligand was confirmed for one of the histidine-containing tripeptide complexes.


Subject(s)
Ether/chemistry , Oligopeptides/chemistry , Amino Acid Sequence , Gases/chemistry , Mass Spectrometry , Models, Molecular , Molecular Structure , Protein Conformation , Protons
13.
J Am Soc Mass Spectrom ; 13(6): 630-49, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12056564

ABSTRACT

The effectiveness of two activation techniques, collision activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD), is compared for structural characterization of protonated and lithium-cationized macrolides and a series of synthetic precursors in a quadrupole ion trap (QIT). Generally, cleavage of the glycosidic linkages attaching the sugars to the macrolide ring and water losses constitute the major fragmentation pathways for most of the protonated compounds. In the IRMPD spectra, a diagnostic fragment ion assigned as the desosamine ion is a dominant ion that is not observed in the CAD spectra because of the higher m/z limit of the storage range required during collisional activation. Activation of the lithium-cationized species results in new diagnostic fragmentation pathways that are particularly useful for confirming the identities of the protecting groups in the synthetic precursors. Multi-step IRMPD allows mapping of the fragmentation genealogies in greater detail and supports the proposed structures of the fragment ions.


Subject(s)
Anti-Bacterial Agents/chemistry , Erythromycin/analogs & derivatives , Erythromycin/chemistry , Infrared Rays , Lithium/chemistry , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...