Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 109(34): 16544-53, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16853103

ABSTRACT

The deposition of silicon dioxide films at 450 degrees C was studied in quasi real time by probing the thermally activated boundary layer region near the growing surface during atmospheric pressure chemical vapor deposition (APCVD). Potential tetraethylorthosilicate (TEOS)/O(3) reaction products have been investigated in an attempt to clarify the reaction mechanism leading to the observed silanol deposition intermediates and delineate the film formation process. The organic products formed during the TEOS/O(3) reaction are acetic acid, formic acid, formaldehyde, carbon monoxide, carbon dioxide, and water. Quantitative methods are developed using FT-IR (Fourier transform infrared) spectroscopy during ozonation of TEOS at elevated temperatures. The measurement of gaseous alcohols of silicon alkoxides by FT-IR is demonstrated by application of an in situ methodology that probes the high-temperature region within the CVD environment. Partial least squares (PLS) Beer's law absorption models are used in determining relative TEOS, ozone, and ethoxysilanol levels during the reaction. The reaction order in TEOS is measured at 1.65 +/- 0.02 over a 0.9 Torr pressure range. Similarly, the ratio of ethoxysilanol formed versus the amount of ozone consumed is ca. 1:3. A radical chain oxidative mechanism involving direct reaction of TEOS and ozone is proposed for formation of highly reactive silanol film growth intermediates.

2.
Chembiochem ; 5(7): 921-7, 2004 Jul 05.
Article in English | MEDLINE | ID: mdl-15239048

ABSTRACT

A surface-based laser desorption/ionization mass spectrometry assay that makes use of Desorption/Ionization on Silicon Mass Spectrometry (DIOS-MS) has been developed to monitor enzyme activity and enzyme inhibition. DIOS-MS has been used to characterize inhibitors from a library and then to monitor their activity against selected enzyme targets, including proteases, glycotransferase, and acetylcholinesterase. An automated DIOS-MS system was also used as a high-throughput screen for the activity of novel enzymes and enzyme inhibitors. On two different commercially available instruments, a sampling rate of up to 38 inhibitors per minute was accomplished, with thousands of inhibitors being monitored. The ease of applying mass spectrometry toward developing enzyme assays and the speed of surface-based assays such as DIOS for monitoring inhibitor effectiveness and enzyme activity makes it attractive for a broad range of screening applications.


Subject(s)
Enzyme Inhibitors/analysis , Enzymes/chemistry , Enzymes/metabolism , Silicon/metabolism , Enzyme Inhibitors/pharmacology , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...