Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
2.
Insects ; 13(3)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35323562

ABSTRACT

The light brown apple moth, Epiphyas postvittana is an invasive, polyphagous pest of horticultural systems around the world. With origins in Australia, the pest has subsequently spread to New Zealand, Hawaii, California and Europe, where it has been found on over 500 plants, including many horticultural crops. We have produced a genomic resource, to understand the biological basis of the polyphagous and invasive nature of this and other lepidopteran pests. The assembled genome sequence encompassed 598 Mb and has an N50 of 301.17 kb, with a BUSCO completion rate of 97.9%. Epiphyas postvittana has 34% of its assembled genome represented as repetitive sequences, with the majority of the known elements made up of longer DNA transposable elements (14.07 Mb) and retrotransposons (LINE 17.83 Mb). Of the 31,389 predicted genes, 28,714 (91.5%) were assigned to 11,438 orthogroups across the Lepidoptera, of which 945 were specific to E. postvittana. Twenty gene families showed significant expansions in E. postvittana, including some likely to have a role in its pest status, such as cytochrome p450s, glutathione-S-transferases and UDP-glucuronosyltransferases. Finally, using a RAD-tag approach, we investigated the population genomics of this pest, looking at its likely patterns of invasion.

3.
Hortic Res ; 8(1): 233, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34719690

ABSTRACT

The Rosaceae family has striking phenotypic diversity and high syntenic conservation. Gillenia trifoliata is sister species to the Maleae tribe of apple and ~1000 other species. Gillenia has many putative ancestral features, such as herb/sub-shrub habit, dry fruit-bearing and nine base chromosomes. This coalescence of ancestral characters in a phylogenetically important species, positions Gillenia as a 'rosetta stone' for translational science within Rosaceae. We present genomic and phenological resources to facilitate the use of Gillenia for this purpose. The Gillenia genome is the first fully annotated chromosome-level assembly with an ancestral genome complement (x = 9), and with it we developed an improved model of the Rosaceae ancestral genome. MADS and NAC gene family analyses revealed genome dynamics correlated with growth and reproduction and we demonstrate how Gillenia can be a negative control for studying fleshy fruit development in Rosaceae.

4.
G3 (Bethesda) ; 11(7)2021 07 14.
Article in English | MEDLINE | ID: mdl-34009255

ABSTRACT

Commercially grown kiwifruit (genus Actinidia) are generally of two sub-species which have a base haploid genome of 29 chromosomes. The yellow-fleshed Actinidia chinensis var. chinensis, is either diploid (2n = 2x = 58) or tetraploid (2n = 4x = 116) and the green-fleshed cultivar A. chinensis var. deliciosa "Hayward," is hexaploid (2n = 6x = 174). Advances in breeding green kiwifruit could be greatly sped up by the use of molecular resources for more efficient and faster selection, for example using marker-assisted selection (MAS). The key genetic marker that has been implemented for MAS in hexaploid kiwifruit is for gender testing. The limited marker-trait association has been reported for other polyploid kiwifruit for fruit and production traits. We have constructed a high-density linkage map for hexaploid green kiwifruit using genotyping-by-sequence (GBS). The linkage map obtained consists of 3686 and 3940 markers organized in 183 and 176 linkage groups for the female and male parents, respectively. Both parental linkage maps are co-linear with the A. chinensis "Red5" reference genome of kiwifruit. The linkage map was then used for quantitative trait locus (QTL) mapping, and successfully identified QTLs for king flower number, fruit number and weight, dry matter accumulation, and storage firmness. These are the first QTLs to be reported and discovered for complex traits in hexaploid kiwifruit.


Subject(s)
Actinidia , Actinidia/genetics , Fruit/genetics , Genotype , Plant Breeding , Chromosome Mapping
5.
Hortic Res ; 6: 101, 2019.
Article in English | MEDLINE | ID: mdl-31645956

ABSTRACT

Pseudomonas syringae pv. actinidiae (Psa) biovar 3, a virulent, canker-inducing pathogen is an economic threat to the kiwifruit (Actinidia spp.) industry worldwide. The commercially grown diploid (2×) A. chinensis var. chinensis is more susceptible to Psa than tetraploid and hexaploid kiwifruit. However information on the genetic loci modulating Psa resistance in kiwifruit is not available. Here we report mapping of quantitative trait loci (QTLs) regulating resistance to Psa in a diploid kiwifruit population, derived from a cross between an elite Psa-susceptible 'Hort16A' and a resistant male breeding parent P1. Using high-density genetic maps and intensive phenotyping, we identified a single QTL for Psa resistance on Linkage Group (LG) 27 of 'Hort16A' revealing 16-19% phenotypic variance and candidate alleles for susceptibility and resistance at this loci. In addition, six minor QTLs were identified in P1 on distinct LGs, exerting 4-9% variance. Resistance in the F1 population is improved by additive effects from 'Hort16A' and P1 QTLs providing evidence that divergent genetic pathways interact to combat the virulent Psa strain. Two different bioassays further identified new QTLs for tissue-specific responses to Psa. The genetic marker at LG27 QTL was further verified for association with Psa resistance in diploid Actinidia chinensis populations. Transcriptome analysis of Psa-resistant and susceptible genotypes in field revealed hallmarks of basal defense and provided candidate RNA-biomarkers for screening for Psa resistance in greenhouse conditions.

6.
Plants (Basel) ; 8(7)2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31336644

ABSTRACT

During analysis of kiwifruit derived from hybrids between the high vitamin C (ascorbic acid; AsA) species Actinidia eriantha and A. chinensis, we observed bimodal segregation of fruit AsA concentration suggesting major gene segregation. To test this hypothesis, we performed whole-genome sequencing on pools of hybrid genotypes with either high or low AsA fruit. Pool-GWAS (genome-wide association study) revealed a single Quantitative Trait Locus (QTL) spanning more than 5 Mbp on chromosome 26, which we denote as qAsA26.1. A co-dominant PCR marker was used to validate this association in four diploid (A. chinensis × A. eriantha) × A. chinensis backcross families, showing that the A. eriantha allele at this locus increases fruit AsA levels by 250 mg/100 g fresh weight. Inspection of genome composition and recombination in other A. chinensis genetic maps confirmed that the qAsA26.1 region bears hallmarks of suppressed recombination. The molecular fingerprint of this locus was examined in leaves of backcross validation families by RNA sequencing (RNASEQ). This confirmed strong allelic expression bias across this region as well as differential expression of transcripts on other chromosomes. This evidence suggests that the region harbouring qAsA26.1 constitutes a supergene, which may condition multiple pleiotropic effects on metabolism.

7.
Mol Ecol ; 28(6): 1210-1223, 2019 03.
Article in English | MEDLINE | ID: mdl-30770610

ABSTRACT

Recent studies have highlighted an important role of structural variation (SV) in ecological and evolutionary processes, but few have studied nonmodel species in the wild. As part of our long-term research programme on the nonmodel teleost fish Australasian snapper (Chrysophrys auratus), we aim to build one of the first catalogues of genomic variants (SNPs and indels, and deletions, duplications and inversions) in fishes and evaluate overlap of genomic variants with regions under putative selection (Tajima's D and π), and coding sequences (genes). For this, we analysed six males and six females from three locations in New Zealand and generated a high-resolution genomic variation catalogue. We characterized 20,385 SVs and found they intersected with almost a third of all annotated genes. Together with small indels, SVs account for three times more variation in the genome in terms of bases affected compared to SNPs. We found that a sizeable portion of detected SVs was in the upper and lower genomic regions of Tajima's D and π, indicating that some of these have an effect on the phenotype. Together, these results shed light on the often neglected genomic variation that is produced by SVs and highlights the need to go beyond the mere measure of SNPs when investigating evolutionary processes, such as species diversification and adaptation.


Subject(s)
Aquatic Organisms/genetics , Evolution, Molecular , Fishes/genetics , Genomic Structural Variation/genetics , Animals , Genome/genetics , Genomics/methods , INDEL Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA
8.
Microrna ; 8(2): 166-170, 2019.
Article in English | MEDLINE | ID: mdl-30501607

ABSTRACT

BACKGROUND: The discovery that a plant microRNA (miRNAs) from rice (Oryza sativa miR168a) can modify post-transcriptional expression of the mammalian. Low-Density Lipoprotein Receptor Adaptor Protein 1 (LDLRAP1) gene highlights the potential for cross-kingdom miRNAmRNA interactions. OBJECTIVE: To investigate whether common variants of the conserved miR168a family have the capability for similar cross-kingdom regulatory functions, we selected sequences from three dietary plant sources: rice (Oryza sativa), tomato (Solanum lycopersicum), apple (Malus domestica) and compared their ability to regulate human LDLRAP1 expression. METHODS: Target prediction software intaRNA and RNAhybrid were used to analyze and calculate the energy and alignment score between the miR168a variants and human LDLRAP1 mRNA. An in vitro cell-based Dual-Luciferase® Reporter Assay (pmirGLO, Promega), was then used to validate the miRNA-mRNA interaction experimentally. RESULTS: Computational analyses revealed that a single nucleotide difference at position 14 (from the 5' end of the miRNA) creates a G:U wobble in the miRNA-mRNA duplex formed by tomato and apple miR168a variants. This G:U wobble had only a small effect on the free energy score (-33.8-34.7 kcal/mol). However, despite reasonable hybridization energy scores (<-20 kcal/mol) for all miR168a variants, only the rice miR168a variant lacking a G:U wobble significantly reduced LDLRAP1 transcript expression by 25.8 + 7.3% (p<0.05), as measured by relative luciferase activity. CONCLUSION: In summary, single nucleotide differences at key positions can have a marked influence on regulatory function despite similar predicted energy scores and miRNA-mRNA duplex structures.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Gene Expression Regulation, Plant/genetics , Malus/genetics , MicroRNAs/genetics , Oryza/genetics , Solanum lycopersicum/genetics , Computational Biology , Gene Silencing/physiology , Humans , RNA, Messenger/genetics , RNA, Plant/genetics
9.
BMC Genomics ; 19(1): 257, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29661190

ABSTRACT

BACKGROUND: Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. RESULTS: A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within 'Hongyang' The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned 'Hort16A' cDNAs and comparing with the predicted protein models for Red5 and both the original 'Hongyang' assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised 'Hongyang' annotation, respectively, compared with 90.9% to the Red5 models. CONCLUSIONS: Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis.


Subject(s)
Actinidia/genetics , Genome, Plant , Genes, Plant , Genotype , Molecular Sequence Annotation , Plant Proteins/genetics
10.
Methods Mol Biol ; 1744: 195-220, 2018.
Article in English | MEDLINE | ID: mdl-29392668

ABSTRACT

Postharvest deterioration of fruits and vegetables can be accelerated by biological, environmental, and physiological stresses. Fully understanding tissue response to harvest will provide new opportunities for limiting postharvest losses during handling and storage. The model plant Arabidopsis thaliana (Arabidopsis) has many attributes that make it excellent for studying the underlying control of postharvest responses. It is also one of the best resourced plants with numerous web-based bioinformatic programs and large numbers of mutant collections. Here we introduce a novel assay system called AIDA (the Arabidopsis Inflorescence Degreening Assay) that we developed for understanding postharvest response of immature tissues. We also demonstrate how the high-throughput screening capability of AIDA can be used with mapping technologies (high-resolution melting [HRM] and needle in the k-stack [NIKS]) to identify regulators of postharvest senescence in ethyl methanesulfonate (EMS) mutagenized plant populations. Whether it is best to use HRM or NIKS or both technologies will depend on your laboratory facilities and computing capabilities.


Subject(s)
Aging , Arabidopsis/physiology , Plant Physiological Phenomena , Biomarkers , Chlorophyll/metabolism , Chromosome Mapping , Genomics , Organ Specificity , Phenotype , Polymorphism, Single Nucleotide
11.
BMC Genomics ; 18(1): 884, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29145825

ABSTRACT

BACKGROUND: Stick insects (Phasmatodea) have a high incidence of parthenogenesis and other alternative reproductive strategies, yet the genetic basis of reproduction is poorly understood. Phasmatodea includes nearly 3000 species, yet only the genome of Timema cristinae has been published to date. Clitarchus hookeri is a geographical parthenogenetic stick insect distributed across New Zealand. Sexual reproduction dominates in northern habitats but is replaced by parthenogenesis in the south. Here, we present a de novo genome assembly of a female C. hookeri and use it to detect candidate genes associated with gamete production and development in females and males. We also explore the factors underlying large genome size in stick insects. RESULTS: The C. hookeri genome assembly was 4.2 Gb, similar to the flow cytometry estimate, making it the second largest insect genome sequenced and assembled to date. Like the large genome of Locusta migratoria, the genome of C. hookeri is also highly repetitive and the predicted gene models are much longer than those from most other sequenced insect genomes, largely due to longer introns. Miniature inverted repeat transposable elements (MITEs), absent in the much smaller T. cristinae genome, is the most abundant repeat type in the C. hookeri genome assembly. Mapping RNA-Seq reads from female and male gonadal transcriptomes onto the genome assembly resulted in the identification of 39,940 gene loci, 15.8% and 37.6% of which showed female-biased and male-biased expression, respectively. The genes that were over-expressed in females were mostly associated with molecular transportation, developmental process, oocyte growth and reproductive process; whereas, the male-biased genes were enriched in rhythmic process, molecular transducer activity and synapse. Several genes involved in the juvenile hormone synthesis pathway were also identified. CONCLUSIONS: The evolution of large insect genomes such as L. migratoria and C. hookeri genomes is most likely due to the accumulation of repetitive regions and intron elongation. MITEs contributed significantly to the growth of C. hookeri genome size yet are surprisingly absent from the T. cristinae genome. Sex-biased genes identified from gonadal tissues, including genes involved in juvenile hormone synthesis, provide interesting candidates for the further study of flexible reproduction in stick insects.


Subject(s)
Genome Size , Genome, Insect , Neoptera/genetics , Animals , Female , Gene Expression Profiling , Gene Ontology , Gonads/metabolism , Insect Proteins/genetics , Male , Molecular Sequence Annotation , Repetitive Sequences, Nucleic Acid , Reproduction/genetics , Sex Characteristics
12.
BMC Genomics ; 18(1): 795, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29041914

ABSTRACT

BACKGROUND: The New Zealand collembolan genus Holacanthella contains the largest species of springtails (Collembola) in the world. Using Illumina technology we have sequenced and assembled a draft genome and transcriptome from Holacanthella duospinosa (Salmon). We have used this annotated assembly to investigate the genetic basis of a range of traits critical to the evolution of the Hexapoda, the phylogenetic position of H. duospinosa and potential horizontal gene transfer events. RESULTS: Our genome assembly was ~375 Mbp in size with a scaffold N50 of ~230 Kbp and sequencing coverage of ~180×. DNA elements, LTRs and simple repeats and LINEs formed the largest components and SINEs were very rare. Phylogenomics (370,877 amino acids) placed H. duospinosa within the Neanuridae. We recovered orthologs of the conserved sex determination genes thought to play a role in sex determination. Analysis of CpG content suggested the absence of DNA methylation, and consistent with this we were unable to detect orthologs of the DNA methyltransferase enzymes. The small subunit rRNA gene contained a possible retrotransposon. The Hox gene complex was broken over two scaffolds. For chemosensory ability, at least 15 and 18 ionotropic glutamate and gustatory receptors were identified, respectively. However, we were unable to identify any odorant receptors or their obligate co-receptor Orco. Twenty-three chitinase-like genes were identified from the assembly. Members of this multigene family may play roles in the digestion of fungal cell walls, a common food source for these saproxylic organisms. We also detected 59 and 96 genes that blasted to bacteria and fungi, respectively, but were located on scaffolds that otherwise contained arthropod genes. CONCLUSIONS: The genome of H. duospinosa contains some unusual features including a Hox complex broken over two scaffolds, in a different manner to other arthropod species, a lack of odorant receptor genes and an apparent lack of environmentally responsive DNA methylation, unlike many other arthropods. Our detection of candidate horizontal gene transfer candidates confirms that this phenomenon is occurring across Collembola. These findings allow us to narrow down the regions of the arthropod phylogeny where key innovations have occurred that have facilitated the evolutionary success of Hexapoda.


Subject(s)
Arthropods/genetics , Evolution, Molecular , Genomics , Animals , Arthropods/growth & development , Arthropods/metabolism , Chitinases/genetics , DNA Methylation , Gene Expression Profiling , Gene Transfer, Horizontal , Molecular Sequence Annotation , Phylogeny , Sex Determination Processes/genetics
13.
Front Plant Sci ; 7: 1865, 2016.
Article in English | MEDLINE | ID: mdl-28018399

ABSTRACT

Bulb color is an important consumer trait for onion (Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic (Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum majus of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species.

14.
PLoS One ; 11(6): e0157783, 2016.
Article in English | MEDLINE | ID: mdl-27336743

ABSTRACT

Phasmatodea, more commonly known as stick insects, have been poorly studied at the molecular level for several key traits, such as components of the sensory system and regulators of reproduction and development, impeding a deeper understanding of their functional biology. Here, we employ de novo transcriptome analysis to identify genes with primary functions related to female odour reception, digestion, and male sexual traits in the New Zealand common stick insect Clitarchus hookeri (White). The female olfactory gene repertoire revealed ten odorant binding proteins with three recently duplicated, 12 chemosensory proteins, 16 odorant receptors, and 17 ionotropic receptors. The majority of these olfactory genes were over-expressed in female antennae and have the inferred function of odorant reception. Others that were predominantly expressed in male terminalia (n = 3) and female midgut (n = 1) suggest they have a role in sexual reproduction and digestion, respectively. Over-represented transcripts in the midgut were enriched with digestive enzyme gene families. Clitarchus hookeri is likely to harbour nine members of an endogenous cellulase family (glycoside hydrolase family 9), two of which appear to be specific to the C. hookeri lineage. All of these cellulase sequences fall into four main phasmid clades and show gene duplication events occurred early in the diversification of Phasmatodea. In addition, C. hookeri genome is likely to express γ-proteobacteria pectinase transcripts that have recently been shown to be the result of horizontal transfer. We also predicted 711 male terminalia-enriched transcripts that are candidate accessory gland proteins, 28 of which were annotated to have molecular functions of peptidase activity and peptidase inhibitor activity, two groups being widely reported to regulate female reproduction through proteolytic cascades. Our study has yielded new insights into the genetic basis of odour detection, nutrient digestion, and male sexual traits in stick insects. The C. hookeri reference transcriptome, together with identified gene families, provides a comprehensive resource for studying the evolution of sensory perception, digestive systems, and reproductive success in phasmids.


Subject(s)
Digestion/genetics , Gene Expression Profiling , Insecta/genetics , Olfactory Perception/genetics , Reproduction/genetics , Transcriptome , Amino Acid Sequence , Animals , Computational Biology/methods , Female , High-Throughput Nucleotide Sequencing , Insect Proteins/chemistry , Insect Proteins/genetics , Insecta/classification , Male , Molecular Sequence Annotation , Phylogeny
15.
PLoS One ; 11(3): e0152147, 2016.
Article in English | MEDLINE | ID: mdl-27003722

ABSTRACT

Moths use their sense of smell to find food sources, mating partners and oviposition sites. For this they possess a family of odorant receptors (ORs). Some ORs are used by both sexes whereas others have sex-specific roles. For example, male moths possess ORs specifically tuned to sex pheromones produced by conspecific females. Here we identify sets of ORs from the antennae of New Zealand endemic leafroller moths Planotortrix octo (48 ORs) and P. excessana (47 ORs) using an RNA-Seq approach. Two orthologous ORs show male-biased expression in the adult antennae of both species (OR7 and OR30) and one other OR in each species was female-biased in its expression (PoctOR25, PexcOR14) by qPCR. PAML analysis conducted on male-biased ORs indicated positive selection acting on the male-biased OR7. The fact that OR7 is likely under positive selection, that it is male-biased in its expression and that its orthologue in C. obliquana, CoblOR7, responds to sex pheromone components also utilised by Planotortrix species, suggests that this receptor may also be important in sex pheromone reception in Planotortrix species.


Subject(s)
Moths/genetics , Receptors, Odorant/genetics , Animals , Female , Male , New Zealand , Pheromones/genetics , Phylogeny , Sex Attractants/genetics , Smell/genetics
16.
Theor Appl Genet ; 129(5): 879-96, 2016 May.
Article in English | MEDLINE | ID: mdl-26801334

ABSTRACT

KEY MESSAGE: Advances have been made in our understanding of Ascochyta blight resistance genetics through mapping candidate genes associated with QTL regions and demonstrating the importance of epistatic interactions in determining resistance. Ascochyta blight disease of pea (Pisum sativum L.) is economically significant with worldwide distribution. The causal pathogens are Didymella pinodes, Phoma medicaginis var pinodella and, in South Australia, P. koolunga. This study aimed to identify candidate genes that map to quantitative trait loci (QTL) for Ascochyta blight field disease resistance and to explore the role of epistatic interactions. Candidate genes associated with QTL were identified beginning with 101 defence-related genes from the published literature. Synteny between pea and Medicago truncatula was used to narrow down the candidates for mapping. Fourteen pea candidate sequences were mapped in two QTL mapping populations, A26 × Rovar and A88 × Rovar. QTL peaks, or the intervals containing QTL peaks, for the Asc2.1, Asc4.2, Asc4.3 and Asc7.1 QTL were defined by four of these candidate genes, while another three candidate genes occurred within 1.0 LOD confidence intervals. Epistasis involving QTL × background marker and background marker × background marker interactions contributed to the disease response phenotypes observed in the two mapping populations. For each population, five pairwise interactions exceeded the 5% false discovery rate threshold. Two candidate genes were involved in significant pairwise interactions. Markers in three genomic regions were involved in two or more epistatic interactions. Therefore, this study has identified pea defence-related sequences that are candidates for resistance determination, and that may be useful for marker-assisted selection. The demonstration of epistasis informs breeders that the architecture of this complex quantitative resistance includes epistatic interactions with non-additive effects.


Subject(s)
Disease Resistance/genetics , Epistasis, Genetic , Genes, Plant , Pisum sativum/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Ascomycota , Chromosome Mapping , DNA, Plant/genetics , Genetic Linkage , Genetic Markers , Medicago truncatula/genetics , Microsatellite Repeats , Phenotype , Plant Diseases/microbiology , Sequence Analysis, DNA , Synteny
17.
Plant J ; 84(2): 417-27, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26358530

ABSTRACT

The molecular genetic mechanisms underlying fruit size remain poorly understood in perennial crops, despite size being an important agronomic trait. Here we show that the expression level of a microRNA gene (miRNA172) influences fruit size in apple. A transposon insertional allele of miRNA172 showing reduced expression associates with large fruit in an apple breeding population, whereas over-expression of miRNA172 in transgenic apple significantly reduces fruit size. The transposon insertional allele was found to be co-located with a major fruit size quantitative trait locus, fixed in cultivated apples and their wild progenitor species with relatively large fruit. This finding supports the view that the selection for large size in apple fruit was initiated prior to apple domestication, likely by large mammals, before being subsequently strengthened by humans, and also helps to explain why signatures of genetic bottlenecks and selective sweeps are normally weaker in perennial crops than in annual crops.


Subject(s)
Fruit/genetics , Malus/genetics , MicroRNAs/genetics , Alleles
18.
J Exp Bot ; 66(21): 6849-62, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26261268

ABSTRACT

Stresses such as energy deprivation, wounding and water-supply disruption often contribute to rapid deterioration of harvested tissues. To uncover the genetic regulation behind such stresses, a simple assessment system was used to detect senescence mutants in conjunction with two rapid mapping techniques to identify the causal mutations. To demonstrate the power of this approach, immature inflorescences of Arabidopsis plants that contained ethyl methanesulfonate-induced lesions were detached and screened for altered timing of dark-induced senescence. Numerous mutant lines displaying accelerated or delayed timing of senescence relative to wild type were discovered. The underlying mutations in three of these were identified using High Resolution Melting analysis to map to a chromosomal arm followed by a whole-genome sequencing-based mapping method, termed 'Needle in the K-Stack', to identify the causal lesions. All three mutations were single base pair changes and occurred in the same gene, NON-YELLOW COLORING1 (NYC1), a chlorophyll b reductase of the short-chain dehydrogenase/reductase (SDR) superfamily. This was consistent with the mutants preferentially retaining chlorophyll b, although substantial amounts of chlorophyll b were still lost. The single base pair mutations disrupted NYC1 function by three distinct mechanisms, one by producing a termination codon, the second by interfering with correct intron splicing and the third by replacing a highly conserved proline with a non-equivalent serine residue. This non-synonymous amino acid change, which occurred in the NADPH binding domain of NYC1, is the first example of such a mutation in an SDR protein inhibiting a physiological response in plants.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Chlorophyll/metabolism , Gene Expression Regulation, Plant , Membrane Proteins/genetics , Oxidoreductases/genetics , Polymorphism, Single Nucleotide , Amino Acid Sequence , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Base Sequence , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mutation , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Sequence Alignment
19.
Front Plant Sci ; 6: 499, 2015.
Article in English | MEDLINE | ID: mdl-26217353

ABSTRACT

Plant betalain pigments are intriguing because they are restricted to the Caryophyllales and are mutually exclusive with the more common anthocyanins. However, betalain biosynthesis is poorly understood compared to that of anthocyanins. In this study, betalain production and betalain-related genes were characterized in Parakeelya mirabilis (Montiaceae). RT-PCR and transcriptomics identified three sequences related to the key biosynthetic enzyme Dopa 4,5-dioxgenase (DOD). In addition to a LigB gene similar to that of non-Caryophyllales species (Class I genes), two other P. mirabilis LigB genes were found (DOD and DOD-like, termed Class II). PmDOD and PmDOD-like had 70% amino acid identity. Only PmDOD was implicated in betalain synthesis based on transient assays of enzyme activity and correlation of transcript abundance to spatio-temporal betalain accumulation. The role of PmDOD-like remains unknown. The striking pigment patterning of the flowers was due to distinct zones of red betacyanin and yellow betaxanthin production. The major betacyanin was the unglycosylated betanidin rather than the commonly found glycosides, an occurrence for which there are a few previous reports. The white petal zones lacked pigment but had DOD activity suggesting alternate regulation of the pathway in this tissue. DOD and DOD-like sequences were also identified in other betalain-producing species but not in examples of anthocyanin-producing Caryophyllales or non-Caryophyllales species. A Class I LigB sequence from the anthocyanin-producing Caryophyllaceae species Dianthus superbus and two DOD-like sequences from the Amaranthaceae species Beta vulgaris and Ptilotus spp. did not show DOD activity in the transient assay. The additional sequences suggests that DOD is part of a larger LigB gene family in betalain-producing Caryophyllales taxa, and the tandem genomic arrangement of two of the three B. vulgaris LigB genes suggests the involvement of duplication in the gene family evolution.

20.
PLoS One ; 10(5): e0128596, 2015.
Article in English | MEDLINE | ID: mdl-26017144

ABSTRACT

The lightbrown apple moth, Epiphyas postvittana is an increasingly global pest of horticultural crops. Like other moths, E. postvittana relies on olfactory cues to locate mates and oviposition sites. To detect these cues, moths have evolved families of genes encoding elements of the peripheral olfactory reception system, including odor carriers, receptors and degrading enzymes. Here we undertake a transcriptomic approach to identify members of these families expressed in the adult antennae of E. postvittana, describing open reading frames encoding 34 odorant binding proteins, 13 chemosensory proteins, 70 odorant receptors, 19 ionotropic receptors, nine gustatory receptors, two sensory neuron membrane proteins, 27 carboxylesterases, 20 glutathione-S-transferases, 49 cytochrome p450s and 18 takeout proteins. For the odorant receptors, quantitative RT-PCR corroborated RNAseq count data on steady state transcript levels. Of the eight odorant receptors that group phylogenetically with pheromone receptors from other moths, two displayed significant male-biased expression patterns, one displayed significant female-biased expression pattern and five were expressed equally in the antennae of both sexes. In addition, we found two male-biased odorant receptors that did not group with previously described pheromone receptors. This suite of olfaction-related genes provides a substantial resource for the functional characterization of this signal transduction system and the development of odor-mediated control strategies for horticultural pests.


Subject(s)
Moths/genetics , Receptors, Odorant/genetics , Smell/genetics , Animals , Arthropod Antennae/physiology , Gene Expression Profiling/methods , Genes, Insect/genetics , Insect Proteins/genetics , Odorants , Phylogeny , Receptors, Pheromone/genetics , Signal Transduction/genetics , Smell/physiology , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...