Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J AOAC Int ; 105(5): 1367-1389, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-35426930

ABSTRACT

BACKGROUND: The Thermo Scientific SureTect™ Listeria species PCR assay utilizes SolarisTM reagents for performing PCR for the rapid and specific detection of Listeria species in a broad range of foods and selected environmental surfaces. OBJECTIVE: To demonstrate reproducibility of the Thermo Scientific SureTect Listeria species PCR assay in a collaborative study using a challenging matrix, full-fat cottage cheese (25 g), to extend the scope of the method. METHODS: In the collaborative study, the candidate method was compared to the US Food and Drug Administration/Bacteriological Analytical Manual (FDA/BAM) Ch. 10 Listeria reference method. The candidate method used two PCR thermocyclers, the Applied Biosystems QuantStudio™ 5 Real-Time PCR instrument (QS5) and the Applied Biosystems 7500 Fast Real-Time PCR instrument (7500 Fast). The candidate method included its own confirmation procedure. Eighteen participants from 10 laboratories located within the United States and Europe were solicited for the collaborative study, with 12 participants submitting valid data. Statistical analysis was conducted according to the probability of detection (POD) statistical model. In addition, in order to extend the scope of the method, seven matrix studies were performed comparing the candidate method to the FDA/BAM reference method. One of these matrixes was also compared to the ISO 11290-1:2017 Microbiology of the food chain-Horizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp.-Part 1: Detection method reference method. RESULTS: In the collaborative study, the difference in laboratory results indicates equivalence between the candidate method and reference method for the matrix evaluated and the method demonstrated acceptable inter-laboratory reproducibility as determined in the collaborative evaluation. The two PCR instruments used in the study performed equivalently. All presumptive positives were confirmed via the alternative confirmation procedure. In the pre-collaborative studies, the results showed comparable performances between the candidate method and the reference method for all matrixes tested. CONCLUSION: Based on the data generated, the method demonstrated acceptable inter-laboratory reproducibility data and statistical analysis. HIGHLIGHTS: Due to the COVID-19 pandemic, some participants had to be trained remotely. Additionally, 25 g full-fat cottage cheese is known to be a challenging matrix to test. No unusual cross-contamination, or false-positive/negative data was reported, highlighting the ease of use, reproducibility, and robustness of the candidate method.


Subject(s)
COVID-19 , Listeria , COVID-19 Testing , Food Microbiology , Humans , Listeria/genetics , Pandemics , Real-Time Polymerase Chain Reaction , Reproducibility of Results , United States
2.
J AOAC Int ; 105(4): 1069-1091, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35179597

ABSTRACT

BACKGROUND: The Thermo Scientific™ SureTect™ Listeria monocytogenes PCR Assay uses Solaris reagents for performing PCR for the rapid and specific detection of Listeria monocytogenes in a broad range of foods and selected environmental surfaces. OBJECTIVE: To demonstrate reproducibility of the SureTect Listeria monocytogenes PCR Assay in a collaborative study using a challenging matrix, full-fat cottage cheese (25 g). To extend the scope of the method. METHOD: In the collaborative study, the candidate method was compared to the United States Food and Drug Administration/Bacteriological Analytical Manual (FDA/BAM) Chapter 10 Listeria reference method. The candidate method used two PCR thermocyclers, the Applied Biosystems™ QuantStudio™ 5 Real-Time PCR instrument (QS5) and the Applied Biosystems 7500 Fast Real-Time PCR instrument (7500 Fast). Eighteen participants from 10 laboratories located within the United States and Europe were solicited for the collaborative study, with 12 participants submitting valid data. Three levels of contamination were evaluated for each matrix. Statistical analysis was conducted according to the probability of detection (POD) statistical model. In addition, to extend the scope, six matrix studies were performed comparing the candidate method to the FDA/BAM reference method. One of these matrixes was also compared to the ISO 11290-1:2017 Microbiology of the Food Chain-Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.-Part 1: Detection Method Reference Method. RESULTS: In the collaborative study, the difference in laboratory results indicates equivalence between the candidate method and reference method for the matrix evaluated, and the method demonstrated acceptable inter-laboratory reproducibility as determined in the collaborative evaluation. The two PCR instruments used in the study performed equivalently. All presumptive positives were confirmed via the alternative confirmation procedure. In the pre-collaborative studies, the results showed comparable performances between the candidate method and the reference method for all matrixes tested. CONCLUSIONS: Based on the data generated, the method demonstrated acceptable inter-laboratory reproducibility data and statistical analysis. HIGHLIGHTS: Due to the COVID-19 pandemic, some participants had to be trained remotely. Additionally, 25 g full-fat cottage cheese is known to be a challenging matrix to test. No unusual cross-contamination or false positive/negative data were reported, highlighting the ease of use, reproducibility, and robustness of the method.


Subject(s)
COVID-19 , Listeria monocytogenes , Listeria , Food Microbiology , Humans , Listeria/genetics , Listeria monocytogenes/genetics , Pandemics , Real-Time Polymerase Chain Reaction , Reproducibility of Results , United States
3.
J AOAC Int ; 105(1): 167-190, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-34586389

ABSTRACT

BACKGROUND: The Thermo Scientific™ SureTect™ Salmonella species PCR Assay utilizes Solaris™ reagents for performing PCR for the rapid and specific detection of Salmonella species in a broad range of foods and select environmental surfaces. OBJECTIVE: The aims were to demonstrate the reproducibility of the Thermo Scientific SureTect Salmonella species PCR Assay in a collaborative study using a challenging matrix, cocoa powder, and to extend the scope of the method. METHOD: In the collaborative study, the candidate method was compared to the US Food and Drug Administration (FDA) Bacteriological Analytical Manual (BAM) Chapter 5 Salmonella reference method. The candidate method used two PCR thermocyclers, the Applied Biosystems™ QuantStudio™ 5 Real-Time PCR instrument (QS5) and the Applied Biosystems 7500 Fast Real-Time PCR instrument (7500 Fast). Fourteen participants from nine laboratories located within the United States and Europe were solicited for the collaborative study, with 12 participants submitting valid data. Three levels of contamination were evaluated for each matrix. Statistical analysis was conducted according to the probability of detection statistical model. In addition, 11 matrix studies were performed comparing the candidate method to the FDA/BAM Chapter 5 or US Department of Agriculture, Food Safety and Inspection Service, Microbiology Laboratory Guidebook 4.10 Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg, and Siluriformes (Fish) Products and Carcass and Environmental Sponges reference method. Nine of these matrices were also compared to the EN ISO 6579-1:2017/Amd.1:2020(E) Microbiology of the food chain-Horizontal method for the detection, enumeration and serotyping of Salmonella-Part 1: Detection of Salmonella spp.-AMENDMENT 1: Broader range of incubation temperatures, amendment to the status of Annex D, and correction of the composition of MSRV and SC reference method. RESULTS: In the collaborative study, the difference in laboratory results indicates equivalence between the candidate method and reference method for the matrix evaluated, and the method demonstrated acceptable interlaboratory reproducibility as determined in the collaborative evaluation. False-positive and false-negative rates were determined for the matrix and produced values of <2%. The two PCR thermocyclers (QS5, 7500 Fast) performed equivalently. There were no result differences between candidate method confirmations and reference method confirmations. In the pre-collaborative matrix extension, the results from the matrix studies showed a comparable performance between the candidate method and the tested reference methods. CONCLUSIONS: Based on the data generated, the method demonstrated acceptable interlaboratory reproducibility data and statistical analysis. HIGHLIGHTS: Due to the COVID-19 pandemic, some participants had to be trained remotely. Additionally, 375 g cocoa powder is known to be a challenging matrix for PCR methods. No unusual cross-contamination or false-positive/negative was reported, highlighting the ease of use, reproducibility, and robustness of the method.


Subject(s)
COVID-19 , Food Microbiology , Animals , Humans , Meat/analysis , Pandemics , Real-Time Polymerase Chain Reaction , Reproducibility of Results , SARS-CoV-2 , Salmonella/genetics , United States
4.
J AOAC Int ; 103(6): 1568-1581, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33247754

ABSTRACT

BACKGROUND: The Solus One Salmonella immunoassay utilizes Salmonella specific selective media and automated liquid handling, for the rapid and specific detection of Salmonella species in select food types. OBJECTIVE: The candidate method was evaluated using 375 g test portions in an unpaired study design for a single matrix, instant non-fat dry milk (NFDM) powder. METHOD: The matrix was compared to the United States Food and Drug Administration/Bacteriological Analytical Manual (FDA/BAM) Chapter 5 Salmonella reference method. Eleven participants from 10 laboratories within academia and industry, located within the United States, Mexico, South Africa, Germany, and the United Kingdom, contributed data for the collaborative study. Three levels of contamination were evaluated for each matrix: an uninoculated control level [0 colony forming units (CFU)/test portion], a low inoculum level (0.2-2 CFU/test portion) and a high inoculum level (2-5 CFU/test portion). Statistical analysis was conducted according to the Probability of Detection (POD) statistical model. RESULTS: Results obtained for the low inoculum level test portions produced a dLPOD value with a 95% confidence interval between the candidate method confirmed (both alternative and conventional confirmation procedures) and the reference method of 0.07 (-0.02, 0.15). CONCLUSIONS: The dLPOD results indicate equivalence between the candidate method and the reference method for the matrix evaluated and the method demonstrated acceptable inter-laboratory reproducibility as determined in the collaborative evaluation. False positive and false negative rates were determined for the matrix and produce values of <2%. HIGHLIGHTS: Based on the data generated, the method demonstrated acceptable inter-laboratory reproducibility data and statistical analysis.


Subject(s)
Food Microbiology , Salmonella , Germany , Humans , Reproducibility of Results , Salmonella/isolation & purification , United Kingdom , United States
5.
J AOAC Int ; 99(2): 495-503, 2016.
Article in English | MEDLINE | ID: mdl-26957366

ABSTRACT

The RIDASCREEN(®)FAST Milk test is a sandwich ELISA for the rapid quantification of milk proteins in various foods. The specific antibodies target casein and ß-lactoglobulin. Samples are extracted and can then be analyzed in less than 40 min. The calibration curve covers a range from 2.5 to 67.5 mg/kg milk protein. The assay was validated with cookies, infant formula, chocolate dessert, ice cream, and sausages. All negative samples were found well below the LOQ of 2.5 mg/kg. Recoveries of the spiked samples were mostly in the range of 80-120%. The LOD of the ELISA was found below 1 mg/kg. The analysis of 39 different substances of interest revealed that no cross-reactivity above the LOQ occurred. Ruggedness testing proved that variations in incubation temperature, reagent volume, incubation time, extraction temperature, and extraction time had no significant influence. The stability at 4-8°C of three independent lots was investigated and found to exceed 18 months. Very good lot-to-lot consistency and no significant loss of the analytical capacity over the shelf life were observed. Incurred cookies and chocolate dessert samples were prepared and analyzed by an independent laboratory; mean recoveries of 94.4 and 102.2% and mean SDs of 10.9 and 6.3%, respectively, were found. For the 0 mg/kg level for both materials, all samples tested returned values of <2.5 mg/kg. Therefore, the analytical performance claims of the manufacturer were confirmed.


Subject(s)
Caseins/analysis , Enzyme-Linked Immunosorbent Assay , Food Analysis , Lactoglobulins/analysis , Milk/chemistry , Animals
6.
J AOAC Int ; 96(2): 225-8, 2013.
Article in English | MEDLINE | ID: mdl-23767343

ABSTRACT

A validation study of the 3M Petrifilm Environmental Listeria (EL) Plate (3M Food Safety, St. Paul, MN) was conducted at Q Laboratories, Inc., Cincinnati, OH. The method was compared to the Health Canada MFHPB-30 reference method for the analysis of stainless steel environmental surfaces. Twenty replicates of the environmental surface were analyzed at a low and a high inoculum level. The low-level sampling area was inoculated with 0.2-2 CFU/5 cm2, and the high-level sampling area was inoculated with 2-5 CFU/5 cm2. Five control replicates were also analyzed at 0 CFU/5 cm2. There was no significant difference in the number of positives detected by the 3M Petrifilm EL Plate method and the Health Canada MFHPB-30 reference method for the environmental surface analyzed in this study.


Subject(s)
Bacteriological Techniques/methods , Bacteriological Techniques/standards , Environmental Microbiology/standards , Listeria/isolation & purification , Reproducibility of Results , Sensitivity and Specificity
7.
J AOAC Int ; 96(2): 218-24, 2013.
Article in English | MEDLINE | ID: mdl-23767342

ABSTRACT

A validation study of the 3M Tecra Listeria Visual Immunoassay (VIA; 3M Food Safety, St. Paul, MN) was conducted at Q Laboratories, Inc., Cincinnati, OH. The 3M Tecra Listeria VIA method was compared to the Health Canada MFHPB-30 reference method for the analysis of five ready-to-eat (RTE) meats: deli turkey, hot dogs, liver pate, raw fermented sausage, and deli ham, and on a stainless steel environmental surface. Twenty replicates of each of the five food matrixes were analyzed at a low and a high inoculum level. The low-level test portions were inoculated with 0.2-2 CFU/25 g, and the high-level test portions with 2-5 CFU/25 g. In addition, 20 replicates of one environmental surface were analyzed at a low and a high inoculum level. The low-level sampling area was inoculated with 0.2-2 CFU/5 cm2, and the high-level area with 2-5 CFU/5 cm2. Five control replicates were also analyzed at 0 CFU/25 g (uninoculated) for the foods and at 0 CFU/5 cm2 for the environmental sampling area. There was no significant difference in the number of positives detected by the 3M Tecra Listeria VIA and the Health Canada MFHPB-30 reference method for four of the RTE meats and the stainless steel environmental surface analyzed in this study. For the raw, fermented sausage, there was a significant difference in the number of positives detected for the high inoculum level by the 3M Tecra Listeria VIA and the Health Canada MFHPB-30 reference method, with the 3M Tecra Listeria VIA method detecting more positives.


Subject(s)
Environmental Microbiology/standards , Food Microbiology/standards , Immunoassay/methods , Immunoassay/standards , Listeria/isolation & purification , Animals , Meat/microbiology , Reference Standards , Reproducibility of Results , Sensitivity and Specificity
8.
J AOAC Int ; 92(1): 165-74, 2009.
Article in English | MEDLINE | ID: mdl-19382575

ABSTRACT

The automated system for enumeration of total viable count (TVC) in foods, TEMPO TVC, uses a dehydrated culture medium and an enumeration card containing 48 wells across 3 different dilutions for the automatic determination of the most probable number (MPN). The alternative method was compared in a multilaboratory collaborative study to AOAC Method 966.23 for determination of aerobic plate count for nondairy products and the Standard Methods for the Examination of Dairy Products (SMEDP) Standard Plate Count for dairy products. Five food types, raw ground beef, raw ground chicken, cooked whitefish fillets, bagged lettuce, and milk, were analyzed for TVC by 14 collaborating laboratories throughout the United States and Canada. Three lots of naturally contaminated food products representing a wide range of counts were tested for each of the 5 food types. The study demonstrated that the overall repeatability, reproducibility, and mean log counts of the TEMPO TVC method were statistically comparable to those of the 2 standard methods at the 5% level.


Subject(s)
Bacteria, Aerobic/isolation & purification , Colony Count, Microbial/methods , Food Microbiology , Meat/analysis , Animals , Automation , Cattle , Chickens , Fishes , Indicators and Reagents , Laboratories/standards , Lactuca/chemistry , Milk/chemistry , Milk/standards , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...