Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
BMC Biol ; 19(1): 40, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33658023

ABSTRACT

BACKGROUND: Insulin secretion from the pancreatic ß-cell is finely modulated by different signals to allow an adequate control of glucose homeostasis. Incretin hormones such as glucagon-like peptide-1 (GLP-1) act as key physiological potentiators of insulin release through binding to the G protein-coupled receptor GLP-1R. Another key regulator of insulin signaling is the Ser/Thr kinase G protein-coupled receptor kinase 2 (GRK2). However, whether GRK2 affects insulin secretion or if GRK2 can control incretin actions in vivo remains to be analyzed. RESULTS: Using GRK2 hemizygous mice, isolated pancreatic islets, and model ß-cell lines, we have uncovered a relevant physiological role for GRK2 as a regulator of incretin-mediated insulin secretion in vivo. Feeding, oral glucose gavage, or administration of GLP-1R agonists in animals with reduced GRK2 levels (GRK2+/- mice) resulted in enhanced early phase insulin release without affecting late phase secretion. In contrast, intraperitoneal glucose-induced insulin release was not affected. This effect was recapitulated in isolated islets and correlated with the increased size or priming efficacy of the readily releasable pool (RRP) of insulin granules that was observed in GRK2+/- mice. Using nanoBRET in ß-cell lines, we found that stimulation of GLP-1R promoted GRK2 association to this receptor and that GRK2 protein and kinase activity were required for subsequent ß-arrestin recruitment. CONCLUSIONS: Overall, our data suggest that GRK2 is an important negative modulator of GLP-1R-mediated insulin secretion and that GRK2-interfering strategies may favor ß-cell insulin secretion specifically during the early phase, an effect that may carry interesting therapeutic applications.


Subject(s)
G-Protein-Coupled Receptor Kinase 2/genetics , Gene Expression Regulation , Glucagon-Like Peptide-1 Receptor/genetics , Insulin Secretion/genetics , Animals , Cell Line , G-Protein-Coupled Receptor Kinase 2/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Male , Mice
2.
Antioxidants (Basel) ; 9(10)2020 Oct 04.
Article in English | MEDLINE | ID: mdl-33020373

ABSTRACT

Perivascular adipose tissue (PVAT) is increasingly being regarded as an important endocrine organ that directly impacts vessel function, structure, and contractility in obesity-associated diseases. We uncover here a role for myeloid G protein-coupled receptor kinase 2 (GRK2) in the modulation of PVAT-dependent vasodilation responses. GRK2 expression positively correlates with myeloid- (CD68) and lymphoid-specific (CD3, CD4, and CD8) markers and with leptin in PVAT from patients with abdominal aortic aneurysms. Using mice hemizygous for GRK2 in the myeloid lineage (LysM-GRK2+/-), we found that GRK2 deficiency in myeloid cells allows animals to preserve the endothelium-dependent acetylcholine or insulin-induced relaxation, which is otherwise impaired by PVAT, in arteries of animals fed a high fat diet (HFD). Downregulation of GRK2 in myeloid cells attenuates HFD-dependent infiltration of macrophages and T lymphocytes in PVAT, as well as the induction of tumor necrosis factor-α (TNFα) and NADPH oxidase (Nox)1 expression, whereas blocking TNFα or Nox pathways by pharmacological means can rescue the impaired vasodilator responses to insulin in arteries with PVAT from HFD-fed animals. Our results suggest that myeloid GRK2 could be a potential therapeutic target in the development of endothelial dysfunction induced by PVAT in the context of obesity.

3.
FASEB J ; 34(1): 399-409, 2020 01.
Article in English | MEDLINE | ID: mdl-31914606

ABSTRACT

The liver plays a key role during fasting to maintain energy homeostasis and euglycemia via metabolic processes mainly orchestrated by the insulin/glucagon ratio. We report here that fasting or calorie restriction protocols in C57BL6 mice promote a marked decrease in the hepatic protein levels of G protein-coupled receptor kinase 2 (GRK2), an important negative modulator of both G protein-coupled receptors (GPCRs) and insulin signaling. Such downregulation of GRK2 levels is liver-specific and can be rapidly reversed by refeeding. We find that autophagy, and not the proteasome, represents the main mechanism implicated in fasting-induced GRK2 degradation in the liver in vivo. Reducing GRK2 levels in murine primary hepatocytes facilitates glucagon-induced glucose production and enhances the expression of the key gluconeogenic enzyme Pck1. Conversely, preventing full downregulation of hepatic GRK2 during fasting using adenovirus-driven overexpression of this kinase in the liver leads to glycogen accumulation, decreased glycemia, and hampered glucagon-induced gluconeogenesis, thus preventing a proper and complete adaptation to nutrient deprivation. Overall, our data indicate that physiological fasting-induced downregulation of GRK2 in the liver is key for allowing complete glucagon-mediated responses and efficient metabolic adaptation to fasting in vivo.


Subject(s)
Adaptation, Biological/drug effects , Autophagy , Fasting , G-Protein-Coupled Receptor Kinase 2/metabolism , Glucagon/pharmacology , Liver/metabolism , Animals , G-Protein-Coupled Receptor Kinase 2/genetics , Gastrointestinal Agents/pharmacology , Homeostasis , Liver/drug effects , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Signal Transduction
4.
Cell Mol Life Sci ; 77(23): 4957-4976, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31927610

ABSTRACT

Macrophages are key effector cells in obesity-associated inflammation. G protein-coupled receptor kinase 2 (GRK2) is highly expressed in different immune cell types. Using LysM-GRK2+/- mice, we uncover that a reduction of GRK2 levels in myeloid cells prevents the development of glucose intolerance and hyperglycemia after a high fat diet (HFD) through modulation of the macrophage pro-inflammatory profile. Low levels of myeloid GRK2 confer protection against hepatic insulin resistance, steatosis and inflammation. In adipose tissue, pro-inflammatory cytokines are reduced and insulin signaling is preserved. Macrophages from LysM-GRK2+/- mice secrete less pro-inflammatory cytokines when stimulated with lipopolysaccharide (LPS) and their conditioned media has a reduced pathological influence in cultured adipocytes or naïve bone marrow-derived macrophages. Our data indicate that reducing GRK2 levels in myeloid cells, by attenuating pro-inflammatory features of macrophages, has a relevant impact in adipose-liver crosstalk, thus preventing high fat diet-induced metabolic alterations.


Subject(s)
Adipose Tissue/metabolism , Diet, High-Fat , G-Protein-Coupled Receptor Kinase 2/metabolism , Liver/metabolism , Myeloid Cells/metabolism , Obesity/metabolism , Adipocytes/drug effects , Adipocytes/metabolism , Adipocytes/pathology , Adipose Tissue, White/pathology , Animals , Culture Media, Conditioned/pharmacology , Cytoprotection/drug effects , Fatty Liver/complications , Fatty Liver/pathology , Gastrointestinal Microbiome/drug effects , Glucose/metabolism , Glucose Intolerance/metabolism , Hypertrophy , Inflammation/pathology , Insulin/metabolism , Insulin Resistance , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Mice, Inbred C57BL , Models, Biological , Myeloid Cells/drug effects , Obesity/complications , Signal Transduction/drug effects , Weight Gain/drug effects
5.
Cells ; 8(11)2019 11 19.
Article in English | MEDLINE | ID: mdl-31752326

ABSTRACT

A differential sex-related sensitivity has been reported in obesity and insulin resistance-related cardio-metabolic diseases, with a lower incidence of these pathologies being observed in young females when compared to age-matched males. However, such relative protection is lost with age. The mechanisms underlying such sex and age-related changes in the susceptibility to diabetes and obesity are not fully understood. Herein, we report that the relative protection that is displayed by young female mice, as compared to male littermates, against some of the metabolic alterations that are induced by feeding a high fat diet (HFD), correlates with a lower upregulation of the protein levels of G protein-coupled receptor kinase (GRK2), which is a key regulator of both insulin and G protein-coupled receptor signaling, in the liver and adipose tissue. Interestingly, when the HFD is initiated in middle-aged (32 weeks) female mice, these animals are no longer protected and display a more overt obese and insulin-resistant phenotype, along with a more evident increase in the GRK2 protein levels in metabolically relevant tissues in such conditions. Our data suggest that GRK2 dosage might be involved in the sex and age-biased sensitivity to insulin resistance-related pathologies.


Subject(s)
Diet, High-Fat/adverse effects , G-Protein-Coupled Receptor Kinase 2/metabolism , Obesity/metabolism , Up-Regulation , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Age Factors , Animals , Disease Models, Animal , Female , Gene Expression Regulation/drug effects , Humans , Insulin Resistance , Liver/drug effects , Liver/metabolism , Male , Mice , Obesity/chemically induced , Sex Characteristics
6.
Front Pharmacol ; 10: 112, 2019.
Article in English | MEDLINE | ID: mdl-30837878

ABSTRACT

G protein-coupled receptor kinase 2 (GRK2) is a central signaling node involved in the modulation of many G protein-coupled receptors (GPCRs) and also displaying regulatory functions in other cell signaling routes. GRK2 levels and activity have been reported to be enhanced in patients or in preclinical models of several relevant pathological situations, such as heart failure, cardiac hypertrophy, hypertension, obesity and insulin resistance conditions, or non-alcoholic fatty liver disease (NAFLD), and to contribute to disease progression by a variety of mechanisms related to its multifunctional roles. Therefore, targeting GRK2 by different strategies emerges as a potentially relevant approach to treat cardiovascular disease, obesity, type 2 diabetes, or NAFLD, pathological conditions which are frequently interconnected and present as co-morbidities.

7.
Biochim Biophys Acta Mol Basis Dis ; 1864(12): 3655-3667, 2018 12.
Article in English | MEDLINE | ID: mdl-30261289

ABSTRACT

Insulin resistance (IR) and obesity are important risk factors for non-alcoholic fatty liver disease (NAFLD). G protein-coupled receptor kinase 2 (GRK2) is involved in the development of IR and obesity in vivo. However, its possible contribution to NAFLD and/or non-alcoholic steatohepatitis (NASH) independently of its role on IR or fat mass accretion has not been explored. Here, we used wild-type (WT) or GRK2 hemizygous (GRK2±) mice fed a high-fat diet (HFD) or a methionine and choline-deficient diet (MCD) as a model of NASH independent of adiposity and IR. GRK2± mice were protected from HFD-induced NAFLD. Moreover, MCD feeding caused an increased in triglyceride content and liver-to-body weight ratio in WT mice, features that were attenuated in GRK2± mice. According to their NAFLD activity score, MCD-fed GRK2± mice were diagnosed with simple steatosis and not overt NASH. They also showed reduced expression of lipogenic and lipid-uptake markers and less signs of inflammation in the liver. GRK2± mice preserved hepatic protective mechanisms as enhanced autophagy and mitochondrial fusion and biogenesis, together with reduced endoplasmic reticulum stress. GRK2 protein was increased in MCD-fed WT but not in GRK2± mice, and enhanced GRK2 expression potentiated palmitic acid-triggered lipid accumulation in human hepatocytes directly relating GRK2 levels to steatosis. GRK2 protein and mRNA levels were increased in human liver biopsies from simple steatosis or NASH patients in two different human cohorts. Our results describe a functional relationship between GRK2 levels and hepatic lipid accumulation and implicate GRK2 in the establishment and/or development of NASH.


Subject(s)
G-Protein-Coupled Receptor Kinase 2/metabolism , Liver/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Animals , Cell Line , Cells, Cultured , Diet, High-Fat/adverse effects , Fatty Liver/etiology , Fatty Liver/genetics , Fatty Liver/metabolism , Fatty Liver/pathology , G-Protein-Coupled Receptor Kinase 2/analysis , G-Protein-Coupled Receptor Kinase 2/genetics , Humans , Lipid Metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , RNA, Messenger/genetics , Up-Regulation
8.
Cell Signal ; 41: 25-32, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28389415

ABSTRACT

G protein-coupled receptor kinase 2 (GRK2) is emerging as a pivotal signalling hub able to integrate different transduction cascades. This ability appears to underlie its central role in different physiological and pathological conditions. Key mediators of cardiovascular function (such as catecholamines or angiotensin II) and components of the systemic milieu altered in insulin resistance conditions converge in increasing GRK2 levels in diverse cardiovascular cell types. In turn, GRK2 would simultaneously modulate several cardiovascular regulatory pathways, including GPCR and insulin signalling cascades, NO bioavailability and mitochondrial function. This fact can help explain the contribution of increased GRK2 levels to maladaptive cardiovascular function and remodeling. It also unveils GRK2 as a link between cardiovascular pathologies and co-morbidities such as obesity or type 2 diabetes. On the other hand, enhanced GRK2 expression, as observed in adipose tissues, liver or skeletal muscle during insulin resistance-related pathologies, could modify the orchestration of GPCR and insulin signalling in these crucial metabolic organs, and contribute to key features of the obese and insulin-resistant phenotype.


Subject(s)
Cardiovascular Diseases/metabolism , Diabetes Mellitus, Type 2/metabolism , G-Protein-Coupled Receptor Kinase 2/metabolism , Obesity/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Animals, Genetically Modified , G-Protein-Coupled Receptor Kinase 2/genetics , Humans , Insulin/metabolism , Insulin Resistance , Models, Animal , Receptors, G-Protein-Coupled/genetics
9.
Cardiovasc Diabetol ; 15(1): 155, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27832814

ABSTRACT

BACKGROUND: The leading cause of death among the obese population is heart failure and stroke prompted by structural and functional changes in the heart. The molecular mechanisms that underlie obesity-related cardiac remodeling are complex, and include hemodynamic and metabolic alterations that ultimately affect the functionality of the myocardium. G protein-coupled receptor kinase 2 (GRK2) is an ubiquitous kinase able to desensitize the active form of several G protein-coupled receptors (GPCR) and is known to play an important role in cardiac GPCR modulation. GRK2 has also been recently identified as a negative modulator of insulin signaling and systemic insulin resistance. METHODS: We investigated the effects elicited by GRK2 downregulation in obesity-related cardiac remodeling. For this aim, we used  9 month-old wild type (WT) and GRK2+/- mice, which display circa 50% lower levels of this kinase, fed with either a standard or a high fat diet (HFD) for 30 weeks. In these mice we studied different parameters related to cardiac growth and lipid accumulation. RESULTS: We find that GRK2+/- mice are protected from obesity-promoted cardiac and cardiomyocyte hypertrophy and fibrosis. Moreover, the marked intracellular lipid accumulation caused by a HFD in the heart is not observed in these mice. Interestingly, HFD significantly increases cardiac GRK2 levels in WT but not in GRK2+/- mice, suggesting that the beneficial phenotype observed in hemizygous animals correlates with the maintenance of GRK2 levels below a pathological threshold. Low GRK2 protein levels are able to keep the PKA/CREB pathway active and to prevent HFD-induced downregulation of key fatty acid metabolism modulators such as Peroxisome proliferator-activated receptor gamma co-activators (PGC1), thus preserving the expression of cardioprotective proteins such as mitochondrial fusion markers mitofusin MFN1 and OPA1. CONCLUSIONS: Our data further define the cellular processes and molecular mechanisms by which GRK2 down-regulation is cardioprotective during diet-induced obesity, reinforcing the protective effect of maintaining low levels of GRK2 under nutritional stress, and showing a role for this kinase in obesity-induced cardiac remodeling and steatosis.


Subject(s)
Cardiomegaly/enzymology , G-Protein-Coupled Receptor Kinase 2/metabolism , Lipid Metabolism , Myocardium/metabolism , Obesity/enzymology , Ventricular Remodeling , Animals , Cardiomegaly/genetics , Cardiomegaly/pathology , Cardiomegaly/prevention & control , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Diet, High-Fat , Disease Models, Animal , Fibrosis , G-Protein-Coupled Receptor Kinase 2/deficiency , G-Protein-Coupled Receptor Kinase 2/genetics , GTP Phosphohydrolases/metabolism , Genetic Predisposition to Disease , Male , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Heart/metabolism , Myocardium/pathology , Obesity/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phenotype , Signal Transduction , Time Factors
10.
Arch Physiol Biochem ; 121(5): 163-77, 2015.
Article in English | MEDLINE | ID: mdl-26643283

ABSTRACT

Obesity is a worldwide problem that has reached epidemic proportions both in developed and developing countries. The excessive accumulation of fat poses a risk to health since it favours the development of metabolic alterations including insulin resistance and tissue inflammation, which further contribute to the progress of the complex pathological scenario observed in the obese. In this review we put together the different outcomes of fat accumulation and insulin resistance in the main insulin-responsive tissues, and discuss the role of some of the key molecular routes that control disease progression both in an organ-specific and also in a more systemic manner. In particular, we focus on the importance of studying the integrated regulation of different organs and pathways that contribute to the global pathophysiology of this condition with a specific emphasis on the role of emerging key molecular nodes such as the G protein-coupled receptor kinase 2 (GRK2) signalling hub.


Subject(s)
G-Protein-Coupled Receptor Kinase 2/metabolism , Inflammation/etiology , Insulin Resistance , Obesity/physiopathology , Animals , Humans , Inflammation/metabolism , Inflammation/pathology , Obesity/complications
11.
Sci Signal ; 8(386): ra73, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26198359

ABSTRACT

Insulin resistance is a common feature of obesity and predisposes individuals to various prevalent pathological conditions. G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor kinase 2 (GRK2) integrates several signal transduction pathways and is emerging as a physiologically relevant inhibitor of insulin signaling. GRK2 abundance is increased in humans with metabolic syndrome and in different murine models of insulin resistance. To support GRK2 as a potential drug target in type 2 diabetes and obesity, we investigated whether lowering GRK2 abundance reversed an ongoing systemic insulin-resistant phenotype, using a mouse model of tamoxifen-induced GRK2 ablation after high-fat diet-dependent obesity and insulin resistance. Tamoxifen-triggered GRK2 deletion impeded further body weight gain, normalized fasting glycemia, improved glucose tolerance, and was associated with preserved insulin sensitivity in skeletal muscle and liver, thereby maintaining whole-body glucose homeostasis. Moreover, when continued to be fed a high-fat diet, these animals displayed reduced fat mass and smaller adipocytes, were resistant to the development of liver steatosis, and showed reduced expression of proinflammatory markers in the liver. Our results indicate that GRK2 acts as a hub to control metabolic functions in different tissues, which is key to controlling insulin resistance development in vivo. These data suggest that inhibiting GRK2 could reverse an established insulin-resistant and obese phenotype, thereby putting forward this enzyme as a potential therapeutic target linking glucose homeostasis and regulation of adiposity.


Subject(s)
Adiposity , G-Protein-Coupled Receptor Kinase 2/metabolism , Glucose/metabolism , Insulin Resistance , Obesity/metabolism , Animals , G-Protein-Coupled Receptor Kinase 2/genetics , Glucose/genetics , Humans , Mice , Mice, Knockout , Obesity/etiology , Obesity/genetics , Obesity/pathology
12.
J Mol Cell Biol ; 6(4): 299-311, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24927997

ABSTRACT

G protein-coupled receptor kinase 2 (GRK2) is an important serine/threonine-kinase regulating different membrane receptors and intracellular proteins. Attenuation of Drosophila Gprk2 in embryos or adult flies induced a defective differentiation of somatic muscles, loss of fibers, and a flightless phenotype. In vertebrates, GRK2 hemizygous mice contained less but more hypertrophied skeletal muscle fibers than wild-type littermates. In C2C12 myoblasts, overexpression of a GRK2 kinase-deficient mutant (K220R) caused precocious differentiation of cells into immature myotubes, which were wider in size and contained more fused nuclei, while GRK2 overexpression blunted differentiation. Moreover, p38MAPK and Akt pathways were activated at an earlier stage and to a greater extent in K220R-expressing cells or upon kinase downregulation, while the activation of both kinases was impaired in GRK2-overexpressing cells. The impaired differentiation and fewer fusion events promoted by enhanced GRK2 levels were recapitulated by a p38MAPK mutant, which was able to mimic the inhibitory phosphorylation of p38MAPK by GRK2, whereas the blunted differentiation observed in GRK2-expressing clones was rescued in the presence of a constitutively active upstream stimulator of the p38MAPK pathway. These results suggest that balanced GRK2 function is necessary for a timely and complete myogenic process.


Subject(s)
Cell Differentiation , G-Protein-Coupled Receptor Kinase 2/physiology , Muscle Development/physiology , Muscle, Skeletal/cytology , Myoblasts/cytology , Animals , Blotting, Western , Cells, Cultured , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...