Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Care ; 66(6): 983-993, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33906957

ABSTRACT

BACKGROUND: The assessment of diaphragmatic kinetics through tissue Doppler imaging (dTDI) was recently proposed as a means to describe diaphragmatic activity in both healthy individuals and intubated patients undergoing weaning from mechanical ventilation. Our primary aim was to investigate whether the diaphragmatic excursion velocity measured with dTDI at the end of a spontaneous breathing trial (SBT) was different in subjects successfully extubated versus those who passed the trial but exhibited extubation failure within 48 h after extubation. METHODS: We enrolled 100 adult subjects, all of whom had successfully passed a 30-min SBT conducted in CPAP of 5 cm H2O. In cases of extubation failure within 48 h after liberation from invasive mechanical ventilation, subjects were re-intubated or supported through noninvasive ventilation. dTDI was performed at the end of the SBT to assess excursion, velocity, and acceleration. RESULTS: Extubation was successful in 79 subjects, whereas it failed in 21 subjects. The median (interquartile range [IQR]) inspiratory peak excursion velocity (3.1 [IQR 2.0-4.3] vs 1.8 [1.3-2.6] cm/s, P < .001), mean velocity (1.6 [IQR 1.2-2.4] vs 1.1 [IQR 0.8-1.4] cm/s, P < .001), and acceleration (8.8 [IQR 5.0-17.8] vs 4.2 [IQR 2.4-8.0] cm/s2, P = .002) were all significantly higher in subjects who failed extubation compared with those who were successfully extubated. Similarly, the median expiratory peak relaxation velocity (2.6 [IQR 1.9-4.5] vs 1.8 [IQR 1.2-2.5] cm/s, P < .001), mean velocity (1.1 [IQR 0.7-1.7] vs 0.9 [IQR 0.6-1.0] cm/s, P = .002), and acceleration (11.2 [IQR 9.1-19.0] vs 7.1 [IQR 4.6-12.0] cm/s2, P = .004) were also higher in the subjects who failed extubation. CONCLUSIONS: In our setting, at the end of SBT, subjects who developed extubation failure within 48 h after extubation experienced a greater diaphragmatic activation compared with subjects who were successfully extubated. (ClinicalTrials.gov registration NCT03962322.).


Subject(s)
Airway Extubation , Ventilator Weaning , Adult , Diaphragm/diagnostic imaging , Humans , Kinetics , Respiration, Artificial
2.
J Clin Monit Comput ; 35(3): 627-636, 2021 05.
Article in English | MEDLINE | ID: mdl-32388653

ABSTRACT

Neurally adjusted ventilatory assist (NAVA) has never been applied in patients recovering from acute brain injury (ABI) because neural respiratory drive could be affected by intracranial disease with detrimental effects on cerebral blood flow (CBF) velocity. Our primary aim was to assess the impact of NAVA and pressure support ventilation (PSV) on CBF velocity. In fifteen adult patients recovering from ABI and undergoing invasive assisted ventilation, PSV and NAVA were applied over 30-min-lasting trials, in the following sequence: PSV1, NAVA, and PSV2. While PSV was set to deliver a tidal volume ranging between 6 and 8 ml kg-1 of predicted body weight, in NAVA the level of assistance was chosen to achieve the same inspiratory peak airway pressure as PSV. At the end of each trial, a sonographic evaluation of CBF mean velocity was bilaterally obtained on the middle cerebral artery and an arterial blood gas sample was taken for analysis. CBF mean velocity was 51.8 [41.9,75.2] cm  s-1 at baseline, 51.9 [43.4,71.0] cm s-1 in PSV1, 53.6 [40.7,67.7] cm s-1 in NAVA, and 49.5 [42.1,70.8] cm s-1 in PSV2 (p = 0.0514) on the left and 50.2 [38.0,77.7] cm s-1 at baseline, 47.8 [41.7,68.2] cm s-1 in PSV1, 53.9 [40.1,78.5] cm s-1 in NAVA, and 55.6 [35.9,74.1] cm s-1 in PSV2 (p = 0.8240) on the right side. No differences were detected for pH (p = 0.0551), arterial carbon dioxide tension (p = 0.8142), and oxygenation (p = 0.0928) over the entire study duration. NAVA and PSV preserved CBF velocity in patients recovering from ABI.Trial registration: The present trial was prospectively registered at www.clinicatrials.gov (NCT03721354) on October 18th, 2018.


Subject(s)
Brain Injuries , Interactive Ventilatory Support , Adult , Brain Injuries/therapy , Cerebrovascular Circulation , Humans , Positive-Pressure Respiration , Tidal Volume
SELECTION OF CITATIONS
SEARCH DETAIL
...