Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; : e202400355, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058554

ABSTRACT

Cellular senescence has emerged as a potential therapeutic target for aging and a wide range of age-related disorders. Despite the encouraging therapeutic impact of senolytic agents on improving lifespan and the outcomes of pharmacological intervention, the senolytic induced side effects pose barriers to clinical application. There is a pressing need for selective ablation of senescent cells (SnCs). The design of senolytic prodrugs has been demonstrated as a promising approach to addressing these issues. These prodrugs are generally designed via modification of senolytics with a cleavable galactose moiety to respond to the senescent biomarker - senescence-associated ß-galactosidase (SA-ß-gal) to restore their therapeutic effects. In this Concept, we summarize the developments by categorizing these prodrugs into two classes: 1) galactose-modified senolytic prodrugs, in which sensing unit galactose is either directly conjugated to the drug or via a self-immolative linker and 2) bioorthogonal activation of senolytic prodrugs. In the bioorthogonal prodrug design, galactose is incorporated into dihydrotetrazine to sense SA-ß-gal for click activation. Notably, in addition to repurposed chemotherapeutics and small molecule inhibitors, PROTACs and photodynamic therapy have been introduced as new senolytics in the prodrug design. It is expected that the senolytic prodrugs would facilitate translating small-molecule senolytics into clinical use.

2.
Angew Chem Int Ed Engl ; 63(9): e202315425, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38233359

ABSTRACT

Although the clearance of senescent cells has been proven to slow down the aging process and promote anti-cancer chemotherapy, the development of senolytics remains challenging. Herein, we report a senolytic strategy enabled by senescent cell-sensitive bioorthogonal tetrazine ligation. Our design is based on linking dihydrotetrazine (Tz) to a galactose (Gal) moiety that serves both as a recognition moiety for senescence-associated ß-galactosidase and a caging group for the control of tetrazine activity. Gal-Tz enables efficient click-release of a fluorescent hemicyanine and doxorubicin from a trans-cyclooctene-caged prodrug to detect and eliminate senescent HeLa and A549 cells over non-senescent counterparts with a 16.44 senolytic index. Furthermore, we leverage the strategy for the selective activation and delivery of proteolysis-targeting chimeras (PROTACs) as senolytics. PROTAC prodrug TCO-ARV-771 can be selectively activated by Gal-Tz and delivered into senescent HeLa and A549 cells to induce the degradation of bromodomain-containing protein 4. Senolytic PROTACs may offer an efficient way for intervention on cell senescence thanks to their unique capacity to degrade target proteins in a sub-stoichiometric and catalytic fashion. The results of this study establish the bioorthogonal tetrazine ligation approach as a viable strategy for selective removal of senescent cells.


Subject(s)
Heterocyclic Compounds , Prodrugs , Humans , Cell Line, Tumor , Senotherapeutics , Prodrugs/pharmacology , Cellular Senescence
SELECTION OF CITATIONS
SEARCH DETAIL
...