Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Inf Technol Biomed ; 4(4): 285-91, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11206813

ABSTRACT

This paper details the implementation and operational performance of a minimum-power 2.45-GHz pulse receiver and a companion on-off keyed transmitter for use in a semi-active, duplex RF biomedical transponder. A 50-ohm microstrip stub-matched zero-bias diode detector forms the heart of a body-worn receiver that has a (CMOS baseband amplifier consuming 20 microA from +3 V and achieves a tangential sensitivity of -53 dBm. The base transmitter generates 0.5 W of peak RF output power into 50 ohms. Both linear and right-hand circularly polarized Tx-Rx antenna sets were employed in system reliability trials carried out in a hospital Coronary Care Unit. For transmitting antenna heights between 0.3 and 2.2 m above floor level, transponder interrogations were 95% reliable within the 67-m2 area of the ward, falling to an average of 46% in the surrounding rooms and corridors. Overall, the circular antenna set gave the higher reliability and lower propagation power decay index.


Subject(s)
Monitoring, Physiologic/instrumentation , Telemedicine/instrumentation , Coronary Care Units , Electrocardiography, Ambulatory , Equipment Design , Humans , Radio Waves
2.
Med Eng Phys ; 20(10): 750-5, 1998 Dec.
Article in English | MEDLINE | ID: mdl-10223644

ABSTRACT

This paper discusses the design and operational assessment of a minimum-power, 2.45 GHz portable pulse receiver and associated base transmitter comprising the interrogation link in a duplex, cross-band RF transponder designed for short-range, remote patient monitoring. A tangential receiver sensitivity of - 53 dBm was achieved using a 50 ohms microstrip stub-matched zero-bias diode detector and a CMOS baseband amplifier consuming 20 microA from + 3 V. The base transmitter generated an on-off keyed peak output of 0.5 W into 50 ohms. Both linear and right-hand circularly-polarised antennas were employed in system evaluations carried out within an operational Coronary Care Unit ward. For transmitting antenna heights of between 0.3 and 2.2 m above floor level. transponder interrogations were 95% reliable within the 82 m2 area of the ward, falling to an average of 46% in the surrounding rooms and corridors. Separating the polarisation modes, using the circular antenna set gave the higher overall reliability.


Subject(s)
Radio Waves , Signal Processing, Computer-Assisted , Telemetry/instrumentation , Equipment Design , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Reproducibility of Results
3.
J Telemed Telecare ; 2(4): 185-91, 1996.
Article in English | MEDLINE | ID: mdl-9375057

ABSTRACT

Radio-based signalling devices will play an important role in future generations of remote patient monitoring equipment, both at home and in hospital. Ultimately, it will be possible to sample vital signs from patients, whatever their location and without them necessarily being aware that a measurement is being taken. This paper reviews current methods for the transmission by radio of physiological parameters over ranges of 0.3, 3 and 30 m, and describes the radiofrequency hardware required and the carrier frequencies commonly used. Future developments, including full duplex systems and the use of more advanced modulation schemes, are described. The paper concludes with a case study of a human temperature telemeter built to indicate ovulation. Clinical results clearly show the advantage to be had in adopting radio biotelemetry in this instance.


Subject(s)
Monitoring, Ambulatory/instrumentation , Telemedicine/instrumentation , Telemetry/instrumentation , Body Temperature , Female , Humans , Ovulation/physiology , Radio
SELECTION OF CITATIONS
SEARCH DETAIL
...