Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vasc Res ; 42(4): 275-83, 2005.
Article in English | MEDLINE | ID: mdl-15908751

ABSTRACT

BACKGROUND: Triacsin C, a fatty acid analog, inhibits endothelial nitric oxide synthetase (eNOS) palmitoylation, increases nitric oxide synthesis and enhances methacholine-induced relaxation of vascular rings. The experiments presented here tested the hypothesis that triacsin C increases the synthesis of PGI(2) and/or endothelial-derived hyperpolarizing factor. METHODS: Long-chain fatty acyl CoA synthetase activity (LCFACoAS), agonist-induced prostacyclin synthesis and agonist-induced release of radioactivity in endothelial cells labeled with [(3)H]arachidonic acid were measured in the presence and absence of triacsin C. RESULTS: Inhibition by triacsin C of palmitoyl CoA formation was significantly greater than inhibition of arachidonoyl CoA formation in solubilized endothelial cell preparations. While 24-hour triacsin C treatment significantly reduced basal 6-keto synthesis, it had no effect on agonist-stimulated synthesis. The release of arachidonic acid metabolites was examined in [(3)H]arachidonate-labeled cells. Triacsin C treatment had no effect on basal or vasopressin-, angiotensin-II-, bradykinin- or ionomycin-induced release of radioactivity, but significantly reduced release in response to isoproterenol or phenylephrine. Expression of neither immunoreactive eNOS nor immunoreactive inducible nitric oxide synthetase (iNOS) was changed by triacsin C treatment, but the fraction of immunoreactive eNOS in the cytoplasm of treated cells was significantly greater as compared to vehicle control cells. Phorbol myristoyl acetate or fenofibrate significantly increased in vitro LCFACoAS activity, and significantly decreased the nitrite/eNOS ratio. CONCLUSIONS: These data indicate that, while triacsin C can inhibit arachidonoyl CoA synthetase in endothelial cells, it does not increase the availability of endogenous substrate for basal or agonist-induced PGI(2) synthesis, nor does it enhance release of arachidonic acid or its metabolites.


Subject(s)
Arachidonic Acid/metabolism , Coenzyme A Ligases/antagonists & inhibitors , Endothelial Cells/metabolism , Enzyme Inhibitors/pharmacology , Triazenes/pharmacology , Aorta/enzymology , Cells, Cultured , Coronary Vessels/enzymology , Epoprostenol/biosynthesis , Humans , Nitric Oxide/biosynthesis , Nitric Oxide Synthase/metabolism
2.
Cardiovasc Res ; 63(2): 338-46, 2004 Aug 01.
Article in English | MEDLINE | ID: mdl-15249192

ABSTRACT

OBJECTIVES: Endothelial nitric oxide synthase (eNOS) activation/deactivation is associated with cyclic depalmitoylation/repalmitoylation of specific Cys residues. The mechanism of depalmitoylation has been identified recently, but repalmitoylation remains undefined. We hypothesized that long chain fatty acyl CoA synthetase (LCFACoAS) modulates endothelial nitric oxide synthase repalmitoylation by limiting palmitoyl CoA availability. METHODS: Human coronary endothelial cells were treated with triacsin-C, an inhibitor of long chain fatty acyl CoA synthetase, for 24 h. Media nitrite accumulation, eNOS activity, and eNOS palmitoylation were measured. Methacholine-induced NO synthesis or vascular relaxation were measured in endothelium-intact rat aortae in the presence and absence of triacsin-C. RESULTS: Triacsin-C significantly reduced incorporation of [3H] palmitate into immunoreactive endothelial nitric oxide synthase and over a concentration range of 0.1 to 10 microM, increased media nitrite accumulations 2- to 2.5-fold over baseline. Total in vitro catalytic activity of nitric oxide synthase in triacsin-C treated cells did not differ significantly from control. Triacsin-C significantly increased methacholine-induced NO synthesis in the isolated rat aorta, and significantly enhanced methacholine-induced relaxation of rat aortic rings. CONCLUSIONS: These data are consistent with the interpretation that inhibition of palmitoylation increases endothelial nitric oxide synthase activity without changing endothelial nitric oxide synthase expression, suggesting that inhibiting palmitoylation increases the catalytically active fraction of endothelial nitric oxide synthase.


Subject(s)
Choline/analogs & derivatives , Coenzyme A Ligases/antagonists & inhibitors , Coronary Vessels , Endothelium, Vascular/metabolism , Hypertension/metabolism , Nitric Oxide/metabolism , Triazenes/pharmacology , Animals , Cells, Cultured , Choline/pharmacology , Cytoplasm/enzymology , Endothelial Cells/metabolism , Female , Humans , Male , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type III , Nitrites/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...