Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Development ; 150(19)2023 10 01.
Article in English | MEDLINE | ID: mdl-37812056

ABSTRACT

The evolution of a unique craniofacial complex in vertebrates made possible new ways of breathing, eating, communicating and sensing the environment. The head and face develop through interactions of all three germ layers, the endoderm, ectoderm and mesoderm, as well as the so-called fourth germ layer, the cranial neural crest. Over a century of experimental embryology and genetics have revealed an incredible diversity of cell types derived from each germ layer, signaling pathways and genes that coordinate craniofacial development, and how changes to these underlie human disease and vertebrate evolution. Yet for many diseases and congenital anomalies, we have an incomplete picture of the causative genomic changes, in particular how alterations to the non-coding genome might affect craniofacial gene expression. Emerging genomics and single-cell technologies provide an opportunity to obtain a more holistic view of the genes and gene regulatory elements orchestrating craniofacial development across vertebrates. These single-cell studies generate novel hypotheses that can be experimentally validated in vivo. In this Review, we highlight recent advances in single-cell studies of diverse craniofacial structures, as well as potential pitfalls and the need for extensive in vivo validation. We discuss how these studies inform the developmental sources and regulation of head structures, bringing new insights into the etiology of structural birth anomalies that affect the vertebrate head.


Subject(s)
Biological Evolution , Skull , Animals , Humans , Vertebrates , Neural Crest/metabolism , Developmental Biology , Gene Expression Regulation, Developmental
2.
NPJ Regen Med ; 8(1): 51, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726321

ABSTRACT

After traumatic injury, healing of mammalian ligaments is typically associated with fibrotic scarring as opposed to scar-free regeneration. In contrast, here we show that the ligament supporting the jaw joint of adult zebrafish is capable of rapid and complete scar-free healing. Following surgical transection of the jaw joint ligament, we observe breakdown of ligament tissue adjacent to the cut sites, expansion of mesenchymal tissue within the wound site, and then remodeling of extracellular matrix (ECM) to a normal ligament morphology. Lineage tracing of mature ligamentocytes following transection shows that they dedifferentiate, undergo cell cycle re-entry, and contribute to the regenerated ligament. Single-cell RNA sequencing of the regenerating ligament reveals dynamic expression of ECM genes in neural-crest-derived mesenchymal cells, as well as diverse immune cells expressing the endopeptidase-encoding gene legumain. Analysis of legumain mutant zebrafish shows a requirement for early ECM remodeling and efficient ligament regeneration. Our study establishes a new model of adult scar-free ligament regeneration and highlights roles of immune-mesenchyme cross-talk in ECM remodeling that initiates regeneration.

3.
Proc Natl Acad Sci U S A ; 120(33): e2300839120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37549271

ABSTRACT

Mammalian hair cells do not functionally regenerate in adulthood but can regenerate at embryonic and neonatal stages in mice by direct transdifferentiation of neighboring supporting cells into new hair cells. Previous work showed loss of transdifferentiation potential of supporting cells is in part due to H3K4me1 enhancer decommissioning of the hair cell gene regulatory network during the first postnatal week. However, inhibiting this decommissioning only partially preserves transdifferentiation potential. Therefore, we explored other repressive epigenetic modifications that may be responsible for this loss of plasticity. We find supporting cells progressively accumulate DNA methylation at promoters of developmentally regulated hair cell genes. Specifically, DNA methylation overlaps with binding sites of Atoh1, a key transcription factor for hair cell fate. We further show that DNA hypermethylation replaces H3K27me3-mediated repression of hair cell genes in mature supporting cells, and is accompanied by progressive loss of chromatin accessibility, suggestive of facultative heterochromatin formation. Another subset of hair cell loci is hypermethylated in supporting cells, but not in hair cells. Ten-eleven translocation (TET) enzyme-mediated demethylation of these hypermethylated sites is necessary for neonatal supporting cells to transdifferentiate into hair cells. We also observe changes in chromatin accessibility of supporting cell subtypes at the single-cell level with increasing age: Gene programs promoting sensory epithelium development loses chromatin accessibility, in favor of gene programs that promote physiological maturation and function of the cochlea. We also find chromatin accessibility is partially recovered in a chronically deafened mouse model, which holds promise for future translational efforts in hearing restoration.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , DNA Methylation , Animals , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cochlea/metabolism , Regeneration/genetics , Chromatin/metabolism , Mammals/genetics
4.
Proc Natl Acad Sci U S A ; 120(34): e2301301120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37585469

ABSTRACT

The auditory organ of Corti is comprised of only two major cell types-the mechanosensory hair cells and their associated supporting cells-both specified from a single pool of prosensory progenitors in the cochlear duct. Here, we show that competence to respond to Atoh1, a transcriptional master regulator necessary and sufficient for induction of mechanosensory hair cells, is established in the prosensory progenitors between E12.0 and 13.5. The transition to the competent state is rapid and is associated with extensive remodeling of the epigenetic landscape controlled by the SoxC group of transcription factors. Conditional loss of Sox4 and Sox11-the two homologous family members transiently expressed in the inner ear at the time of competence establishment-blocks the ability of prosensory progenitors to differentiate as hair cells. Mechanistically, we show that Sox4 binds to and establishes accessibility of early sensory lineage-specific regulatory elements, including ones associated with Atoh1 and its direct downstream targets. Consistent with these observations, overexpression of Sox4 or Sox11 prior to developmental establishment of competence precociously induces hair cell differentiation in the cochlear progenitors. Further, reintroducing Sox4 or Sox11 expression restores the ability of postnatal supporting cells to differentiate as hair cells in vitro and in vivo. Our findings demonstrate the pivotal role of SoxC family members as agents of epigenetic and transcriptional changes necessary for establishing competence for sensory receptor differentiation in the inner ear.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , SOXC Transcription Factors , Animals , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cochlea/metabolism , Hair Cells, Auditory/metabolism , Cell Differentiation , Transcription Factors/metabolism , Epigenesis, Genetic , Organ of Corti , Gene Expression Regulation, Developmental , Mammals/metabolism
5.
Dev Cell ; 58(6): 461-473.e7, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36905926

ABSTRACT

Organ development involves the sustained production of diverse cell types with spatiotemporal precision. In the vertebrate jaw, neural-crest-derived progenitors produce not only skeletal tissues but also later-forming tendons and salivary glands. Here we identify the pluripotency factor Nr5a2 as essential for cell-fate decisions in the jaw. In zebrafish and mice, we observe transient expression of Nr5a2 in a subset of mandibular postmigratory neural-crest-derived cells. In zebrafish nr5a2 mutants, nr5a2-expressing cells that would normally form tendons generate excess jaw cartilage. In mice, neural-crest-specific Nr5a2 loss results in analogous skeletal and tendon defects in the jaw and middle ear, as well as salivary gland loss. Single-cell profiling shows that Nr5a2, distinct from its roles in pluripotency, promotes jaw-specific chromatin accessibility and gene expression that is essential for tendon and gland fates. Thus, repurposing of Nr5a2 promotes connective tissue fates to generate the full repertoire of derivatives required for jaw and middle ear function.


Subject(s)
Receptors, Cytoplasmic and Nuclear , Zebrafish , Mice , Animals , Zebrafish/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Cell Differentiation/physiology , Connective Tissue/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Neural Crest/metabolism , Gene Expression Regulation, Developmental
6.
bioRxiv ; 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36778403

ABSTRACT

After traumatic injury, healing of mammalian ligaments is typically associated with fibrotic scarring as opposed to scar-free regeneration. In contrast, here we show that the ligament supporting the jaw joint of adult zebrafish is capable of rapid and complete scar-free healing. Following surgical transection of the jaw joint ligament, we observe breakdown of ligament tissue adjacent to the cut sites, expansion of mesenchymal tissue within the wound site, and then remodeling of extracellular matrix (ECM) to a normal ligament morphology. Lineage tracing of mature ligamentocytes following transection shows that they dedifferentiate, undergo cell cycle re-entry, and contribute to the regenerated ligament. Single-cell RNA sequencing of the regenerating ligament reveals dynamic expression of ECM genes in neural-crest-derived mesenchymal cells, as well as diverse immune cells expressing the endopeptidase-encoding gene legumain . Analysis of legumain mutant zebrafish shows a requirement for early ECM remodeling and efficient ligament regeneration. Our study establishes a new model of adult scar-free ligament regeneration and highlights roles of immune-mesenchyme cross-talk in ECM remodeling that initiates regeneration. Highlights: Rapid regeneration of the jaw joint ligament in adult zebrafishDedifferentiation of mature ligamentocytes contributes to regenerationscRNAseq reveals dynamic ECM remodeling and immune activation during regenerationRequirement of Legumain for ECM remodeling and ligament healing.

7.
Elife ; 122023 01 04.
Article in English | MEDLINE | ID: mdl-36598134

ABSTRACT

A major cause of human deafness and vestibular dysfunction is permanent loss of the mechanosensory hair cells of the inner ear. In non-mammalian vertebrates such as zebrafish, regeneration of missing hair cells can occur throughout life. While a comparative approach has the potential to reveal the basis of such differential regenerative ability, the degree to which the inner ears of fish and mammals share common hair cells and supporting cell types remains unresolved. Here, we perform single-cell RNA sequencing of the zebrafish inner ear at embryonic through adult stages to catalog the diversity of hair cells and non-sensory supporting cells. We identify a putative progenitor population for hair cells and supporting cells, as well as distinct hair and supporting cell types in the maculae versus cristae. The hair cell and supporting cell types differ from those described for the lateral line system, a distributed mechanosensory organ in zebrafish in which most studies of hair cell regeneration have been conducted. In the maculae, we identify two subtypes of hair cells that share gene expression with mammalian striolar or extrastriolar hair cells. In situ hybridization reveals that these hair cell subtypes occupy distinct spatial domains within the three macular organs, the utricle, saccule, and lagena, consistent with the reported distinct electrophysiological properties of hair cells within these domains. These findings suggest that primitive specialization of spatially distinct striolar and extrastriolar hair cells likely arose in the last common ancestor of fish and mammals. The similarities of inner ear cell type composition between fish and mammals validate zebrafish as a relevant model for understanding inner ear-specific hair cell function and regeneration.


Subject(s)
Ear, Inner , Zebrafish , Animals , Humans , Zebrafish/genetics , Transcriptome , Hair Cells, Auditory/physiology , Hair Cells, Auditory, Inner , Mammals/genetics
8.
Semin Cell Dev Biol ; 138: 45-53, 2023 03 30.
Article in English | MEDLINE | ID: mdl-35331627

ABSTRACT

Of all the cell types arising from the neural crest, ectomesenchyme is likely the most unusual. In contrast to the neuroglial cells generated by neural crest throughout the embryo, consistent with its ectodermal origin, cranial neural crest-derived cells (CNCCs) generate many connective tissue and skeletal cell types in common with mesoderm. Whether this ectoderm-derived mesenchyme (ectomesenchyme) potential reflects a distinct developmental origin from other CNCC lineages, and/or epigenetic reprogramming of the ectoderm, remains debated. Whereas decades of lineage tracing studies have defined the potential of CNCC ectomesenchyme, these are being revisited by modern genetic techniques. Recent work is also shedding light on the extent to which intrinsic and extrinsic cues determine ectomesenchyme potential, and whether maintenance or reacquisition of CNCC multipotency influences craniofacial repair.


Subject(s)
Mesoderm , Neural Crest , Neural Crest/metabolism , Ectoderm/metabolism , Embryo, Mammalian
9.
Front Cell Dev Biol ; 10: 1030587, 2022.
Article in English | MEDLINE | ID: mdl-36568983

ABSTRACT

Congenital heart defects occur in almost 80% of patients with CHARGE syndrome, a sporadically occurring disease causing craniofacial and other abnormalities due to mutations in the CHD7 gene. Animal models have been generated to mimic CHARGE syndrome; however, heart defects are not extensively described in zebrafish disease models of CHARGE using morpholino injections or genetic mutants. Here, we describe the co-occurrence of craniofacial abnormalities and heart defects in zebrafish chd7 mutants. These mutant phenotypes are enhanced in the maternal zygotic mutant background. In the chd7 mutant fish, we found shortened craniofacial cartilages and extra cartilage formation. Furthermore, the length of the ventral aorta is altered in chd7 mutants. Many CHARGE patients have aortic arch anomalies. It should be noted that the aberrant branching of the first branchial arch artery is observed for the first time in chd7 fish mutants. To understand the cellular mechanism of CHARGE syndrome, neural crest cells (NCCs), that contribute to craniofacial and cardiovascular tissues, are examined using sox10:Cre lineage tracing. In contrast to its function in cranial NCCs, we found that the cardiac NCC-derived mural cells along the ventral aorta and aortic arch arteries are not affected in chd7 mutant fish. The chd7 fish mutants we generated recapitulate some of the craniofacial and cardiovascular phenotypes found in CHARGE patients and can be used to further determine the roles of CHD7.

10.
Elife ; 112022 06 28.
Article in English | MEDLINE | ID: mdl-35762575

ABSTRACT

Whereas no known living vertebrate possesses gills derived from the jaw-forming mandibular arch, it has been proposed that the jaw arose through modifications of an ancestral mandibular gill. Here, we show that the zebrafish pseudobranch, which regulates blood pressure in the eye, develops from mandibular arch mesenchyme and first pouch epithelia and shares gene expression, enhancer utilization, and developmental gata3 dependence with the gills. Combined with work in chondrichthyans, our findings in a teleost fish point to the presence of a mandibular pseudobranch with serial homology to gills in the last common ancestor of jawed vertebrates, consistent with a gill origin of vertebrate jaws.


Subject(s)
Biological Evolution , Gills , Animals , Branchial Region , Jaw , Zebrafish
11.
Development ; 149(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-35178545

ABSTRACT

Loss or damage to the mandible caused by trauma, treatment of oral malignancies, and other diseases is treated using bone-grafting techniques that suffer from numerous shortcomings and contraindications. Zebrafish naturally heal large injuries to mandibular bone, offering an opportunity to understand how to boost intrinsic healing potential. Using a novel her6:mCherry Notch reporter, we show that canonical Notch signaling is induced during the initial stages of cartilage callus formation in both mesenchymal cells and chondrocytes following surgical mandibulectomy. We also show that modulation of Notch signaling during the initial post-operative period results in lasting changes to regenerate bone quantity one month later. Pharmacological inhibition of Notch signaling reduces the size of the cartilage callus and delays its conversion into bone, resulting in non-union. Conversely, conditional transgenic activation of Notch signaling accelerates conversion of the cartilage callus into bone, improving bone healing. Given the conserved functions of this pathway in bone repair across vertebrates, we propose that targeted activation of Notch signaling during the early phases of bone healing in mammals may both augment the size of the initial callus and boost its ossification into reparative bone.


Subject(s)
Fracture Healing , Zebrafish , Animals , Bone Regeneration , Bony Callus/metabolism , Fracture Healing/physiology , Mammals , Mandible
12.
Nat Commun ; 13(1): 13, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013168

ABSTRACT

The cranial neural crest generates a huge diversity of derivatives, including the bulk of connective and skeletal tissues of the vertebrate head. How neural crest cells acquire such extraordinary lineage potential remains unresolved. By integrating single-cell transcriptome and chromatin accessibility profiles of cranial neural crest-derived cells across the zebrafish lifetime, we observe progressive and region-specific establishment of enhancer accessibility for distinct fates. Neural crest-derived cells rapidly diversify into specialized progenitors, including multipotent skeletal progenitors, stromal cells with a regenerative signature, fibroblasts with a unique metabolic signature linked to skeletal integrity, and gill-specific progenitors generating cell types for respiration. By retrogradely mapping the emergence of lineage-specific chromatin accessibility, we identify a wealth of candidate lineage-priming factors, including a Gata3 regulatory circuit for respiratory cell fates. Rather than multilineage potential being established during cranial neural crest specification, our findings support progressive and region-specific chromatin remodeling underlying acquisition of diverse potential.


Subject(s)
Cell Differentiation/physiology , Neural Crest , Single-Cell Analysis , Zebrafish/embryology , Animals , Chromatin , Gene Expression Regulation, Developmental , Neural Crest/cytology , Neural Crest/metabolism , Single-Cell Analysis/methods , Skull/cytology , Transcriptome , Zebrafish/metabolism
13.
Development ; 149(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34878091

ABSTRACT

A major feature of Saethre-Chotzen syndrome is coronal craniosynostosis, the fusion of the frontal and parietal bones at the coronal suture. It is caused by heterozygous loss-of-function mutations in either of the bHLH transcription factors TWIST1 and TCF12. Although compound heterozygous Tcf12; Twist1 mice display severe coronal synostosis, the individual role of Tcf12 had remained unexplored. Here, we show that Tcf12 controls several key processes in calvarial development, including the rate of frontal and parietal bone growth, and the boundary between sutural and osteogenic cells. Genetic analysis supports an embryonic requirement for Tcf12 in suture formation, as combined deletion of Tcf12 in embryonic neural crest and mesoderm, but not in postnatal suture mesenchyme, disrupts the coronal suture. We also detected asymmetric distribution of mesenchymal cells on opposing sides of the wild-type frontal and parietal bones, which prefigures later bone overlap at the sutures. In Tcf12 mutants, reduced asymmetry is associated with bones meeting end-on-end, possibly contributing to synostosis. Our results support embryonic requirements of Tcf12 in proper formation of the overlapping coronal suture.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Craniosynostoses/metabolism , Osteogenesis , Skull/embryology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Craniosynostoses/embryology , Craniosynostoses/genetics , Mesenchymal Stem Cells/metabolism , Mesoderm/metabolism , Mice , Mice, Inbred C57BL , Neural Crest/metabolism , Skull/metabolism
14.
NPJ Regen Med ; 6(1): 77, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34815400

ABSTRACT

Osteoarthritis (OA) impacts hundreds of millions of people worldwide, with those affected incurring significant physical and financial burdens. Injuries such as focal defects to the articular surface are a major contributing risk factor for the development of OA. Current cartilage repair strategies are moderately effective at reducing pain but often replace damaged tissue with biomechanically inferior fibrocartilage. Here we describe the development, transcriptomic ontogenetic characterization and quality assessment at the single cell level, as well as the scaled manufacturing of an allogeneic human pluripotent stem cell-derived articular chondrocyte formulation that exhibits long-term functional repair of porcine articular cartilage. These results define a new potential clinical paradigm for articular cartilage repair and mitigation of the associated risk of OA.

15.
Development ; 148(16)2021 08 15.
Article in English | MEDLINE | ID: mdl-34338288

ABSTRACT

Proper function of the vertebrate skeleton requires the development of distinct articulating embryonic cartilages. Irx transcription factors are arranged in co-regulated clusters that are expressed in the developing skeletons of the face and appendages. IrxB cluster genes are required for the separation of toes in mice and formation of the hyoid joint in zebrafish, yet whether Irx genes have broader roles in skeletal development remains unclear. Here, we perform a comprehensive loss-of-function analysis of all 11 Irx genes in zebrafish. We uncover conserved requirements for IrxB genes in formation of the fish and mouse scapula. In the face, we find a requirement for IrxAb genes and irx7 in formation of anterior neural crest precursors of the jaw, and for IrxBa genes in formation of endodermal pouches and gill cartilages. We also observe extensive joint loss and cartilage fusions in animals with combinatorial losses of Irx clusters, with in vivo imaging revealing that at least some of these fusions arise through inappropriate chondrogenesis. Our analysis reveals diverse roles for Irx genes in the formation and later segmentation of the facial skeleton.


Subject(s)
Cartilage/embryology , Chondrogenesis/genetics , Homeodomain Proteins/metabolism , Multigene Family , Mutant Proteins/metabolism , Skull/embryology , Transcription Factors/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Zebrafish/genetics , Alleles , Animals , Animals, Genetically Modified , Body Patterning/genetics , Gene Expression , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Mutation , Neural Crest/metabolism , Transcription Factors/genetics , Zebrafish Proteins/genetics
16.
Development ; 148(15)2021 08 01.
Article in English | MEDLINE | ID: mdl-34338289

ABSTRACT

Transcriptional regulatory networks refine gene expression boundaries to define the dimensions of organ progenitor territories. Kidney progenitors originate within the intermediate mesoderm (IM), but the pathways that establish the boundary between the IM and neighboring vessel progenitors are poorly understood. Here, we delineate roles for the zinc-finger transcription factor Osr1 in kidney and vessel progenitor development. Zebrafish osr1 mutants display decreased IM formation and premature emergence of lateral vessel progenitors (LVPs). These phenotypes contrast with the increased IM and absent LVPs observed with loss of the bHLH transcription factor Hand2, and loss of hand2 partially suppresses osr1 mutant phenotypes. hand2 and osr1 are expressed together in the posterior mesoderm, but osr1 expression decreases dramatically prior to LVP emergence. Overexpressing osr1 during this timeframe inhibits LVP development while enhancing IM formation, and can rescue the osr1 mutant phenotype. Together, our data demonstrate that osr1 modulates the extent of IM formation and the temporal dynamics of LVP development, suggesting that a balance between levels of osr1 and hand2 expression is essential to demarcate the kidney and vessel progenitor territories.


Subject(s)
Cell Differentiation/physiology , Mesoderm/metabolism , Mesoderm/physiology , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Zebrafish/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Developmental/physiology , Kidney/metabolism , Kidney/physiology , Organogenesis/physiology , Transcription Factors/metabolism
17.
Nat Commun ; 12(1): 4797, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376651

ABSTRACT

Sutures separate the flat bones of the skull and enable coordinated growth of the brain and overlying cranium. The coronal suture is most commonly fused in monogenic craniosynostosis, yet the unique aspects of its development remain incompletely understood. To uncover the cellular diversity within the murine embryonic coronal suture, we generated single-cell transcriptomes and performed extensive expression validation. We find distinct pre-osteoblast signatures between the bone fronts and periosteum, a ligament-like population above the suture that persists into adulthood, and a chondrogenic-like population in the dura mater underlying the suture. Lineage tracing reveals an embryonic Six2+ osteoprogenitor population that contributes to the postnatal suture mesenchyme, with these progenitors being preferentially affected in a Twist1+/-; Tcf12+/- mouse model of Saethre-Chotzen Syndrome. This single-cell atlas provides a resource for understanding the development of the coronal suture and the mechanisms for its loss in craniosynostosis.


Subject(s)
Cranial Sutures/metabolism , Gene Expression Regulation, Developmental , Osteogenesis/genetics , Single-Cell Analysis/methods , Transcriptome/genetics , Acrocephalosyndactylia/embryology , Acrocephalosyndactylia/genetics , Acrocephalosyndactylia/pathology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cranial Sutures/cytology , Cranial Sutures/embryology , Dura Mater/cytology , Dura Mater/embryology , Dura Mater/metabolism , Mesoderm/cytology , Mesoderm/embryology , Mesoderm/metabolism , Mice, Knockout , Mice, Transgenic , Osteoblasts/cytology , Osteoblasts/metabolism , RNA-Seq/methods , Skull/cytology , Skull/embryology , Skull/metabolism , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism
18.
Development ; 148(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33913478

ABSTRACT

Tendons and ligaments are fibrous connective tissues vital to the transmission of force and stabilization of the musculoskeletal system. Arising in precise regions of the embryo, tendons and ligaments share many properties and little is known about the molecular differences that differentiate them. Recent studies have revealed heterogeneity and plasticity within tendon and ligament cells, raising questions regarding the developmental mechanisms regulating tendon and ligament identity. Here, we discuss recent findings that contribute to our understanding of the mechanisms that establish and maintain tendon progenitors and their differentiated progeny in the head, trunk and limb. We also review the extent to which these findings are specific to certain anatomical regions and model organisms, and indicate which findings similarly apply to ligaments. Finally, we address current research regarding the cellular lineages that contribute to tendon and ligament repair, and to what extent their regulation is conserved within tendon and ligament development.


Subject(s)
Cell Differentiation , Ligaments/embryology , Musculoskeletal Development , Stem Cells/metabolism , Tendons/embryology , Animals , Humans , Ligaments/cytology , Stem Cells/cytology , Tendons/cytology
19.
Genes (Basel) ; 12(2)2021 01 26.
Article in English | MEDLINE | ID: mdl-33530637

ABSTRACT

Precise spatiotemporal expression of the Nodal-Lefty-Pitx2 cascade in the lateral plate mesoderm establishes the left-right axis, which provides vital cues for correct organ formation and function. Mutations of one cascade constituent PITX2 and, separately, the Forkhead transcription factor FOXC1 independently cause a multi-system disorder known as Axenfeld-Rieger syndrome (ARS). Since cardiac involvement is an established ARS phenotype and because disrupted left-right patterning can cause congenital heart defects, we investigated in zebrafish whether foxc1 contributes to organ laterality or situs. We demonstrate that CRISPR/Cas9-generated foxc1a and foxc1b mutants exhibit abnormal cardiac looping and that the prevalence of cardiac situs defects is increased in foxc1a-/-; foxc1b-/- homozygotes. Similarly, double homozygotes exhibit isomerism of the liver and pancreas, which are key features of abnormal gut situs. Placement of the asymmetric visceral organs relative to the midline was also perturbed by mRNA overexpression of foxc1a and foxc1b. In addition, an analysis of the left-right patterning components, identified in the lateral plate mesoderm of foxc1 mutants, reduced or abolished the expression of the NODAL antagonist lefty2. Together, these data reveal a novel contribution from foxc1 to left-right patterning, demonstrating that this role is sensitive to foxc1 gene dosage, and provide a plausible mechanism for the incidence of congenital heart defects in Axenfeld-Rieger syndrome patients.


Subject(s)
Anterior Eye Segment/abnormalities , Eye Abnormalities/diagnosis , Eye Abnormalities/etiology , Eye Diseases, Hereditary/diagnosis , Eye Diseases, Hereditary/etiology , Forkhead Transcription Factors/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Phenotype , Alleles , Animals , Computational Biology/methods , Disease Models, Animal , Gene Expression Profiling , Genetic Association Studies/methods , Genotype , Humans , Mesoderm/embryology , Mesoderm/metabolism , Mutation , Zebrafish
20.
Elife ; 102021 01 27.
Article in English | MEDLINE | ID: mdl-33501917

ABSTRACT

The specification of cartilage requires Sox9, a transcription factor with broad roles for organogenesis outside the skeletal system. How Sox9 and other factors gain access to cartilage-specific cis-regulatory regions during skeletal development was unknown. By analyzing chromatin accessibility during the differentiation of neural crest cells into chondrocytes of the zebrafish head, we find that cartilage-associated chromatin accessibility is dynamically established. Cartilage-associated regions that become accessible after neural crest migration are co-enriched for Sox9 and Fox transcription factor binding motifs. In zebrafish lacking Foxc1 paralogs, we find a global decrease in chromatin accessibility in chondrocytes, consistent with a later loss of dorsal facial cartilages. Zebrafish transgenesis assays confirm that many of these Foxc1-dependent elements function as enhancers with region- and stage-specific activity in facial cartilages. These results show that Foxc1 promotes chondrogenesis in the face by establishing chromatin accessibility at a number of cartilage-associated gene enhancers.


Animals with backbones (or vertebrates) have body shape determined, in part, by their skeletons. These emerge in the embryo in the form of cartilage structures that will then get replaced by bone during development. The neural crest is a group of embryonic cells that can become different tissues. In the head, it forms the cartilage scaffold for some of the facial bones and the base of the skull. During this process, a protein called Sox9 is required for neural crest cells to morph into cartilage. This transcription factor binds to regulatory sequences in the genome to turn cartilage genes on. But Sox9 is also required to form non-cartilage tissues in organs such as the liver, lung, and kidneys. How, then, does Sox9 only turn on the genes required for cartilage formation in the embryonic face? This specificity can be controlled by which regulatory sequences Sox9 can physically access in a cell: controlling which regulatory sequences Sox9 can access determines which genes it can activate, and which type of tissue a cell will become. Xu, Yu et al. wanted to understand exactly how Sox9 switches on the genes that turn neural crest cells into facial cartilage. They studied the genomes of zebrafish embryos, which have a cartilaginous skeleton similar to other vertebrates, and found out which areas were accessible to transcription factors in the neural crest cells that became facial cartilage. Analyzing these regions suggested that sites where Sox9 could bind were often close to binding sites for another protein, called Foxc1. When zebrafish embryos were genetically modified to inactivate Foxc1 proteins, many of the regulatory sequences in cartilage failed to become accessible, and the cartilaginous skeleton did not form properly. These results support a model in which Foxc1 opens up the genomic regions that Sox9 needs to bind for cartilage to form, as opposed to the regions that Sox9 would bind to make different organ cell types. The findings of Xu, Yu et al. uncover the stepwise process by which cartilage cells are made during development. Further research based on these results could allow scientists to develop new ways of replacing cartilage in degenerative conditions such as arthritis.


Subject(s)
Chondrogenesis , Forkhead Transcription Factors/genetics , Skull/embryology , Zebrafish Proteins/genetics , Zebrafish/embryology , Animals , Cartilage/embryology , Cell Differentiation , Chondrocytes/metabolism , Embryo, Nonmammalian/embryology , Forkhead Transcription Factors/metabolism , Neural Crest/embryology , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...