Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Anat Histol Embryol ; 51(5): 563-575, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35758554

ABSTRACT

Cetacean skin continues to be the investigative focus of researchers from several different scientific disciplines. Yet, most research on the basic functions of lipo-keratinocytes, which constitute most of the cetacean epidermis, providing the first layer of protection against various environmental aggressors (including an ever-increasing level of pollutants), is restricted to specialized literature on the permeability barrier only. In this review, we have attempted to bring together much of the recent research on the functional biology of cetacean skin, including special adaptations at the cellular, genetic and molecular level. We have correlated these data with the cetacean permeability barrier's unique structural and metabolic adaptations to fully aquatic life, including the development of secondary barriers to ward off challenges such as biofouling as well as exposure to extreme cold for the epidermis, which is outside of the insulation provided by blubber. An apparent contradiction exists between some of the reported gene loss for lipogenic enzymes in cetacean skin and the high degree of cetacean epidermal lipogenesis, as well as loss of desmocollin 1 and desmoplakin genes [while immunolocalization of these proteins is reported (Journal of Anatomy, 234, 201)] warrants a re-evaluation of the gene loss data.


Subject(s)
Adaptation, Physiological , Epidermis , Animals , Permeability
2.
J Invest Dermatol ; 142(10): 2623-2634.e12, 2022 10.
Article in English | MEDLINE | ID: mdl-35341734

ABSTRACT

Previous work has shown increased expression of genes related to oxidative stress in nonlesional atopic dermatitis (ADNL) skin. Although mitochondria are key regulators of ROS production, their function in AD has never been investigated. Energy metabolism and the oxidative stress response were studied in keratinocytes (KCs) from patients with ADNL or healthy controls. Moreover, ADNL human epidermal equivalents were treated with tigecycline or MitoQ. We found that pyruvate and glucose were used as energy substrates by ADNL KCs. Increased mitochondrial oxidation of (very) long-chain fatty acids, associated with enhanced complexes I and II activities, was observed in ADNL KCs. Metabolomic analysis revealed increased tricarboxylic acid cycle turnover. Increased aerobic metabolism generated oxidative stress in ADNL KCs. ADNL human epidermal equivalents displayed increased mitochondrial function and an enhanced oxidative stress response compared with controls. Treatment of ADNL human epidermal equivalents with tigecycline or MitoQ largely corrected the AD profile, including high p-65 NF-κB, abnormal lamellar bodies, and cellular damage. Furthermore, we found that glycolysis supports but does not supersede mitochondrial metabolism in ADNL KCs. Thus, aerobic metabolism predominates in ADNL but leads to oxidative stress. Therefore, mitochondria could be a reservoir of potential therapeutic targets in atopic dermatitis.


Subject(s)
Dermatitis, Atopic , Dermatitis, Atopic/genetics , Fatty Acids/metabolism , Glucose/metabolism , Humans , Mitochondria/metabolism , NF-kappa B/metabolism , Pyruvic Acid/metabolism , Reactive Oxygen Species/metabolism , Tigecycline/metabolism
3.
JID Innov ; 2(2): 100083, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35199088

ABSTRACT

Epidermal basement membrane, a tightly packed network of extracellular matrix (ECM) components, is a source of physical, chemical, and biological factors required for the structural and functional homeostasis of the epidermis. Variations within the ECM create distinct environments, which can affect the property of cells in the basal layer of the epidermis and subsequently affect keratinocyte differentiation and stratification. Very little attention has been paid to mimicking basement membrane in organotypic cultures. In this study, using parameters outlined in a consensus on the quality standard of organotypic models suitable for dermatological research, we have evaluated three basement membrane substitutes. We compared fibronectin with three complex three-dimensional matrices: Matrigel, decellularized dermal fibroblast‒produced and ‒assembled ECM, and a dry human amniotic membrane. Our results suggest that Matrigel is not a suitable substrate for human epidermal equivalent culture, whereas the two other complex three-dimensional substitutes, decellularized dermal fibroblast‒produced and ‒assembled ECM and dry human amniotic membrane, were superior to single layer fibronectin coating. Human epidermal equivalents cultured on either decellularized dermal fibroblast‒produced and ‒assembled ECM or on dry human amniotic membrane generated hemidesmosomes, whereas those on fibronectin did not. In addition, human epidermal equivalent cultured on decellularized dermal fibroblast‒produced and ‒assembled ECM and on dry human amniotic membrane can be maintained in culture 4 days longer than human epidermal equivalent cultured on fibronectin without compromising the barrier function.

4.
Cell Host Microbe ; 29(8): 1235-1248.e8, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34214492

ABSTRACT

The epidermis forms a barrier that defends the body from desiccation and entry of harmful substances, while also sensing and integrating environmental signals. The tightly orchestrated cellular changes needed for the formation and maintenance of this epidermal barrier occur in the context of the skin microbiome. Using germ-free mice, we demonstrate the microbiota is necessary for proper differentiation and repair of the epidermal barrier. These effects are mediated by microbiota signaling through the aryl hydrocarbon receptor (AHR) in keratinocytes, a xenobiotic receptor also implicated in epidermal differentiation. Mice lacking keratinocyte AHR are more susceptible to barrier damage and infection, during steady-state and epicutaneous sensitization. Colonization with a defined consortium of human skin isolates restored barrier competence in an AHR-dependent manner. We reveal a fundamental mechanism whereby the microbiota regulates skin barrier formation and repair, which has far-reaching implications for the numerous skin disorders characterized by epidermal barrier dysfunction.


Subject(s)
Microbiota/physiology , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction , Skin/microbiology , Animals , Basic Helix-Loop-Helix Transcription Factors , Cell Differentiation , Cell Line , Epidermal Cells/metabolism , Epidermal Cells/pathology , Epidermis/metabolism , Female , Humans , Keratinocytes , Male , Mice , Mice, Inbred C57BL , Skin/pathology , Skin Diseases/microbiology
5.
BMC Neurosci ; 22(1): 43, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34157971

ABSTRACT

BACKGROUND: Autism, a childhood behavioral disorder, belongs to a large suite of diseases, collectively referred to as autism spectrum disorders (ASD). Though multifactorial in etiology, approximately 10% of ASD are associated with atopic dermatitis (AD). Moreover, ASD prevalence increases further as AD severity worsens, though these disorders share no common causative mutations. We assessed here the link between these two disorders in the standard, valproic acid mouse model of ASD. In prior studies, there was no evidence of skin involvement, but we hypothesized that cutaneous involvement could be detected in experiments conducted in BALB/c mice. BALB/c is an albino, laboratory-bred strain of the house mouse and is among the most widely used inbred strains used in animal experimentation. METHODS: We performed our studies in valproic acid (VPA)-treated BALB/c hairless mice, a standard mouse model of ASD. Mid-trimester pregnant mice received a single intraperitoneal injection of either valproic acid sodium salt dissolved in saline or saline alone on embryonic day 12.5 and were housed individually until postnatal day 21. Only the brain and epidermis appeared to be affected, while other tissues remain unchanged. At various postnatal time points, brain, skin and blood samples were obtained for histology and for quantitation of tissue sphingolipid content and cytokine levels. RESULTS: AD-like changes in ceramide content occurred by day one postpartum in both VPA-treated mouse skin and brain. The temporal co-emergence of AD and ASD, and the AD phenotype-dependent increase in ASD prevalence correlated with early appearance of cytokine markers (i.e., interleukin [IL]-4, 5, and 13), as well as mast cells in skin and brain. The high levels of interferon (IFN)γ not only in skin, but also in brain likely account for a significant decline in esterified very-long-chain N-acyl fatty acids in brain ceramides, again mimicking known IFNγ-induced changes in AD. CONCLUSION: Baseline involvement of both AD and ASD could reflect concurrent neuro- and epidermal toxicity, possibly because both epidermis and neural tissues originate from the embryonic neuroectoderm. These studies illuminate the shared susceptibility of the brain and epidermis to a known neurotoxin, suggesting that the atopic diathesis could be extended to include ASD.


Subject(s)
Autistic Disorder/chemically induced , Autistic Disorder/metabolism , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/metabolism , Phenotype , Valproic Acid/toxicity , Animals , Anticonvulsants/toxicity , Autistic Disorder/genetics , Dermatitis, Atopic/genetics , Female , Inflammation Mediators/metabolism , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Inbred BALB C , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/metabolism
6.
Skin Pharmacol Physiol ; 34(5): 246-252, 2021.
Article in Chinese | MEDLINE | ID: mdl-33915532

ABSTRACT

Sphingomyelin (SM) is a constituent of cellular membranes, while ceramides (Cer) produced from SM on plasma membranes serve as a lipid mediator that regulates cell proliferation, differentiation, and apoptosis. In the skin, SM also is a precursor of Cer, an important constituent of epidermal permeability barrier. We investigated the role of epidermal SM synthase (SMS)2, an isoform of SMS, which modulates SM and Cer levels on plasma membranes. Although SMS2-knockout (SMS2-KO) mice were not neonatal lethal, an ichthyotic phenotype with epidermal hyperplasia and hyperkeratosis was evident at birth, which persisted until 2 weeks of age. These mice showed abnormal lamellar body morphology and secretion, and abnormal extracellular lamellar membranes in the stratum corneum. These abnormalities were no longer evident by 4 weeks of age in SMS2-KO mice. Our study suggests that (1) exposure to a dry terrestrial environment initiates compensatory responses, thereby normalizing epidermal ichthyotic abnormalities and (2) that a nonlethal gene abnormality can cause an ichthyotic skin phenotype.


Subject(s)
Lamellar Bodies , Transferases (Other Substituted Phosphate Groups) , Animals , Epidermis , Mice , Mice, Knockout , Transferases (Other Substituted Phosphate Groups)/deficiency , Transferases (Other Substituted Phosphate Groups)/genetics
7.
Am J Pathol ; 191(5): 921-929, 2021 05.
Article in English | MEDLINE | ID: mdl-33607042

ABSTRACT

Loss-of-function mutations in arachidonate lipoxygenase 12B (ALOX12B) are an important cause of autosomal recessive congenital ichthyosis (ARCI). 12R-lipoxygenase (12R-LOX), the protein product of ALOX12B, has been proposed to covalently bind the corneocyte lipid envelope (CLE) to the proteinaceous corneocyte envelope, thereby providing a scaffold for the assembly of barrier-providing, mature lipid lamellae. To test this hypothesis, an in-depth ultrastructural examination of CLEs was performed in ALOX12B-/- human and Alox12b-/- mouse epidermis, extracting samples with pyridine to distinguish covalently attached CLEs from unbound (ie, noncovalently bound) CLEs. ALOX12B--/- stratum corneum contained abundant pyridine-extractable (ie, unbound) CLEs, compared with normal stratum corneum. These unbound CLEs were associated with defective post-secretory lipid processing, and were specific to 12R-LOX deficiency, because they were not observed with deficiency of the related ARCI-associated proteins, patatin-like phospholipase 1 (Pnpla1) or abhydrolase domain containing 5 (Abhd5). These results suggest that 12R-LOX contributes specifically to CLE-corneocyte envelope cross-linking, which appears to be a prerequisite for post-secretory lipid processing, and provide insights into the pathogenesis of 12R-LOX deficiency in this subtype of ARCI, as well as other conditions that display a defective CLE.


Subject(s)
Arachidonate 12-Lipoxygenase/genetics , Ichthyosis/diagnostic imaging , Lipid Metabolism , Proteins/metabolism , Animals , Arachidonate 12-Lipoxygenase/deficiency , Arachidonate 12-Lipoxygenase/metabolism , Epidermis/ultrastructure , Female , Humans , Keratinocytes/ultrastructure , Male , Mice , Mice, Knockout , Middle Aged , Mutation , Pyridines/metabolism , Skin/ultrastructure
8.
J Allergy Clin Immunol ; 147(1): 361-367.e1, 2021 01.
Article in English | MEDLINE | ID: mdl-32615171

ABSTRACT

BACKGROUND: The nonlesional skin of children with atopic dermatitis (AD) with peanut allergy (PA) is associated with increased transepidermal water loss; low urocanic acid (UCA) and pyrrolidone carboxylic acid (PCA), both of which are filaggrin breakdown products; and a reduced ratio of esterified ω-hydroxy fatty acid sphingosine ceramides (EOS-CERs) to nonhydroxy fatty acid sphingosine ceramides (NS-CERs) in the skin. The skin barrier of subjects with PA without AD (AD-PA+) has not been studied. OBJECTIVE: Our aim was to explore whether AD-PA+ is associated with skin barrier abnormalities. METHODS: A total of 33 participants were enrolled, including 13 AD-PA+, 9 AD+PA+, and 11 nonatopic (NA) participants. RESULTS: The PCA content in the stratum corneum of AD-PA+ subjects was significantly reduced versus that in NA subjects (median level, 67 vs 97 µg/mg protein [P = .028]). The ratio between cis- and trans-UCA decreased significantly from being highest in the NA group (1.62) to lowest in AD+PA+ group (0.07 [P < .001 vs in the NA group; P = .006 vs in the AD-PA+ group]), with the AD-PA+ group having an intermediate cis/trans-UCA ratio (1.17 [P = .024 vs in the NA group]). The TEWL in AD-PA+ subjects did not differ from that in the group with NA skin. Interestingly, AD-PA+ subjects had an increased EOS/NS-CER ratio versus that in the group of subjects with NA skin (1.9 vs 1.3 [P = .008]), whereas the AD+PA+ group had a decreased proportion of EOS-CERs (0.8 [P = .001] vs in the AD-PA+ group). CONCLUSION: Our data demonstrate that irrespective of AD, PA is associated with decreased skin cis-UCA and PCA content. An increase in skin EOS-CER/NS-CER ratio separates the AD-PA+ group from the AD+PA+ and NA groups.


Subject(s)
Dermatitis, Atopic , Skin Abnormalities , Skin , Child , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Female , Filaggrin Proteins , Humans , Male , Peanut Hypersensitivity/immunology , Peanut Hypersensitivity/pathology , Skin/immunology , Skin/pathology , Skin Abnormalities/immunology , Skin Abnormalities/pathology
9.
Cells ; 9(3)2020 03 10.
Article in English | MEDLINE | ID: mdl-32164386

ABSTRACT

Atopic dermatitis (AD) is a multifactorial, heterogeneous disease associated with epidermal barrier disruption and intense systemic inflammation. Previously, we showed that exosomes derived from human adipose tissue-derived mesenchymal stem cells (ASC-exosomes) attenuate AD-like symptoms by reducing multiple inflammatory cytokine levels. Here, we investigated ASC-exosomes' effects on skin barrier restoration by analyzing protein and lipid contents. We found that subcutaneous injection of ASC-exosomes in an oxazolone-induced dermatitis model remarkably reduced trans-epidermal water loss, while enhancing stratum corneum (SC) hydration and markedly decreasing the levels of inflammatory cytokines such as IL-4, IL-5, IL-13, TNF-α, IFN-γ, IL-17, and TSLP, all in a dose-dependent manner. Interestingly, ASC-exosomes induced the production of ceramides and dihydroceramides. Electron microscopic analysis revealed enhanced epidermal lamellar bodies and formation of lamellar layer at the interface of the SC and stratum granulosum with ASC-exosomes treatment. Deep RNA sequencing analysis of skin lesions demonstrated that ASC-exosomes restores the expression of genes involved in skin barrier, lipid metabolism, cell cycle, and inflammatory response in the diseased area. Collectively, our results suggest that ASC-exosomes effectively restore epidermal barrier functions in AD by facilitating the de novo synthesis of ceramides, resulting in a promising cell-free therapeutic option for treating AD.


Subject(s)
Adipose Tissue/metabolism , Ceramides/biosynthesis , Dermatitis, Atopic/drug therapy , Epidermis/metabolism , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Animals , Ceramides/metabolism , Dermatitis, Atopic/pathology , Female , Humans , Mice
11.
J Morphol ; 280(12): 1871-1880, 2019 12.
Article in English | MEDLINE | ID: mdl-31633222

ABSTRACT

The stratum corneum (SC), the top layer of the epidermis, is the functional site of the skin barrier and serves to maintain hydration of the body by preventing water loss and thwarting the entrance of pathogens. The naked mole rat (NMR) (Heterocephalus glaber) is a rodent that resides in hypoxic underground tunnels in arid Africa. NMRs are not only hairless; their skin is devoid of glands and pain sensation. To understand how the skin barrier of the NMR is uniquely adapted to this environment, skin samples from the dorsum and ventral abdomen in one adult and one neonate were examined by transmission electron microscopy using both reduced osmium tetroxide to assess overall structure and ruthenium tetroxide post-fixation to assess lipid organization. These findings were compared with that of hairless mice-a well-defined model for skin barrier studies. The plasticity of the skin was evaluated on 10 NMRs from a colony at the Philadelphia Zoo in humid and dry conditions by measuring cutaneous hydration, transepidermal water loss (TEWL), and pH. The epidermal ultrastructure of the NMR differed from hairless mice by having the following features: decreased content of lamellar bodies (LBs), higher LB pleomorphism, periodic presence of abnormal lipid bilayers, and an unusually thick SC. The NMRs developed significant TEWL and a trend toward decreased hydration when subjected to dry conditions. While these features illustrate an imperfect skin barrier in terrestrial mammals, they likely represent adaptations of the poikilothermic NMRs to their unique natural fossorial climate. Prolonged exposure to decreased humidity could possibly lead to adverse health effects in this species.


Subject(s)
Adaptation, Physiological , Ecosystem , Epidermis/ultrastructure , Humidity , Mole Rats/anatomy & histology , Africa , Animals , Epidermis/anatomy & histology , Epidermis/diagnostic imaging , Epidermis/physiology , Lipids , Magnetic Resonance Spectroscopy , Mice , Microscopy, Electron, Transmission , Mole Rats/physiology , Skin/anatomy & histology , Skin/diagnostic imaging , Skin/ultrastructure , Water
12.
Sci Rep ; 9(1): 13254, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31519952

ABSTRACT

Fatty acid transport protein 4 (FATP4) is an acyl-CoA synthetase that is required for normal permeability barrier in mammalian skin. FATP4 (SLC27A4) mutations cause ichthyosis prematurity syndrome, a nonlethal disorder. In contrast, Fatp4-/- mice die neonatally from a defective barrier. Here we used electron microscopy and lipidomics to characterize defects in Fatp4-/- mice. Mutants showed lamellar body, corneocyte lipid envelope, and cornified envelope abnormalities. Lipidomics identified two lipids previously speculated to be present in mouse epidermis, sphingosine ß-hydroxyceramide and monoacylglycerol; mutants displayed decreased proportions of these and the two ceramide classes that carry ultralong-chain, amide-linked fatty acids (FAs) thought to be critical for barrier function, unbound ω-O-acylceramide and bound ω-hydroxyceramide, the latter constituting the major component of the corneocyte lipid envelope. Other abnormalities included elevated amounts of sphingosine α-hydroxyceramide, phytosphingosine non-hydroxyceramide, and 1-O-acylceramide. Acyl chain length alterations in ceramides also suggested roles for FATP4 in esterifying saturated non-hydroxy and ß-hydroxy FAs with at least 25 carbons and saturated or unsaturated ω-hydroxy FAs with at least 30 carbons to CoA. Our lipidomic analysis is the most thorough such study of the Fatp4-/- mouse skin barrier to date, providing information about how FATP4 can contribute to barrier function by regulating fatty acyl moieties in various barrier lipids.


Subject(s)
Ceramides/metabolism , Fatty Acid Transport Proteins/physiology , Fatty Acids/metabolism , Keratinocytes/metabolism , Monoglycerides/metabolism , Skin/metabolism , Animals , Lipids/analysis , Mice , Mice, Transgenic
13.
Sci Transl Med ; 11(480)2019 02 20.
Article in English | MEDLINE | ID: mdl-30787169

ABSTRACT

Skin barrier dysfunction has been reported in both atopic dermatitis (AD) and food allergy (FA). However, only one-third of patients with AD have FA. The purpose of this study was to use a minimally invasive skin tape strip sampling method and a multiomics approach to determine whether children with AD and FA (AD FA+) have stratum corneum (SC) abnormalities that distinguish them from AD without FA (AD FA-) and nonatopic (NA) controls. Transepidermal water loss was found to be increased in AD FA+. Filaggrin and the proportion of ω-hydroxy fatty acid sphingosine ceramide content in nonlesional skin of children with AD FA+ were substantially lower than in AD FA- and NA skin. These abnormalities correlated with morphologic changes in epidermal lamellar bilayer architecture responsible for barrier homeostasis. Shotgun metagenomic studies revealed that the nonlesional skin of AD FA+ had increased abundance of Staphylococcus aureus compared to NA. Increased expression of keratins 5, 14, and 16 indicative of hyperproliferative keratinocytes was observed in the SC of AD FA+. The skin transcriptome of AD FA+ had increased gene expression for dendritic cells and type 2 immune pathways. A network analysis revealed keratins 5, 14, and 16 were positively correlated with AD FA+, whereas filaggrin breakdown products were negatively correlated with AD FA+. These data suggest that the most superficial compartment of nonlesional skin in AD FA+ has unique properties associated with an immature skin barrier and type 2 immune activation.


Subject(s)
Dermatitis, Atopic/diagnosis , Food Hypersensitivity/diagnosis , Skin/pathology , Adolescent , Area Under Curve , Child , Child, Preschool , Dendritic Cells/metabolism , Dermatitis, Atopic/pathology , Epidermis/metabolism , Filaggrin Proteins , Food Hypersensitivity/pathology , Humans , Intermediate Filament Proteins/metabolism , Keratins/metabolism , Lipids/analysis , Microbiota , Skin/microbiology , Surgical Tape , Transcriptome/genetics , Water Loss, Insensible
14.
J Invest Dermatol ; 139(4): 760-768, 2019 04.
Article in English | MEDLINE | ID: mdl-30471252

ABSTRACT

The corneocyte lipid envelope (CLE), a monolayer of ω-hydroxyceramides whose function(s) remain(s) uncertain, is absent in patients with autosomal recessive congenital ichthyoses with mutations in enzymes that regulate epidermal lipid synthesis. Secreted lipids fail to transform into lamellar membranes in certain autosomal recessive congenital ichthyosis epidermis, suggesting the CLE provides a scaffold for the extracellular lamellae. However, because cornified envelopes are attenuated in these autosomal recessive congenital ichthyoses, the CLE may also provide a scaffold for subjacent cornified envelope formation, evidenced by restoration of cornified envelopes after CLE rescue. We provide multiple lines of evidence that the CLE originates as lamellar body-limiting membranes fuse with the plasma membrane: (i) ABCA12 patients and Abca12-/- mice display normal CLEs; (ii) CLEs are normal in Netherton syndrome, despite destruction of secreted LB contents; (iii) CLEs are absent in VSP33B-negative patients; (iv) limiting membranes of lamellar bodies are defective in lipid-synthetic autosomal recessive congenital ichthyoses; and (v) lipoxygenases, lipase activity, and LIPN co-localize within putative lamellar bodies.


Subject(s)
DNA/genetics , Ichthyosiform Erythroderma, Congenital/genetics , Lipid Metabolism/genetics , Lipids/genetics , Mutation , Skin/metabolism , Animals , DNA Mutational Analysis , Humans , Ichthyosiform Erythroderma, Congenital/metabolism , Ichthyosiform Erythroderma, Congenital/pathology , Skin/pathology
15.
Am J Pathol ; 188(6): 1419-1429, 2018 06.
Article in English | MEDLINE | ID: mdl-29548991

ABSTRACT

Mutations in several lipid synthetic enzymes that block fatty acid and ceramide production produce autosomal recessive congenital ichthyoses (ARCIs) and associated abnormalities in permeability barrier homeostasis. However, the basis for the phenotype in patients with NIPAL4 (ichthyin) mutations (among the most prevalent ARCIs) remains unknown. Barrier function was abnormal in an index patient and in canines with homozygous NIPAL4 mutations, attributable to extensive membrane stripping, likely from detergent effects of nonesterified free fatty acid. Cytotoxicity compromised not only lamellar body secretion but also formation of the corneocyte lipid envelope (CLE) and attenuation of the cornified envelope (CE), consistent with a previously unrecognized, scaffold function of the CLE. Together, these abnormalities result in failure to form normal lamellar bilayers, accounting for the permeability barrier abnormality and clinical phenotype in NIPA-like domain-containing 4 (NIPAL4) deficiency. Thus, NIPAL4 deficiency represents another lipid synthetic ARCI that converges on the CLE (and CE), compromising their putative scaffold function. However, the clinical phenotype only partially improved after normalization of CLE and CE structure with topical ω-O-acylceramide because of ongoing accumulation of toxic metabolites, further evidence that proximal, cytotoxic metabolites contribute to disease pathogenesis.


Subject(s)
Disease Models, Animal , Epidermis/pathology , Ichthyosis/pathology , Lipids/analysis , Mutation , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/genetics , Adult , Animals , Dogs , Epidermis/metabolism , Female , Homozygote , Humans , Ichthyosis/genetics , Ichthyosis/metabolism , Male , Pedigree , Phenotype
16.
J Invest Dermatol ; 137(9): 1868-1877, 2017 09.
Article in English | MEDLINE | ID: mdl-28526300

ABSTRACT

AP1 transcription factors are important controllers of gene expression in the epidermis, and altered AP1 factor function can perturb keratinocyte proliferation and differentiation. However, our understanding of how AP1 signaling changes may underlie or exacerbate skin disease is limited. We have shown that inhibiting AP1 factor function in suprabasal adult epidermis leads to reduced filaggrin levels and to a phenotype that resembles the genetic disorder ichthyosis vulgaris. We now show that inhibiting AP1 factor function during development in embryonic epidermis produces marked phenotypic changes including reduced filaggrin mRNA and protein levels, compromised barrier function, marked ultrastructural change, and enhanced dehydration susceptibility that resembles the phenotype observed in the flaky tail mouse, a model for ichthyosis vulgaris. In addition, the AP1 factor-deficient newborn mice display a collodion membrane phenotype that is not observed in flaky tail mice or in newborn individuals with ichthyosis vulgaris but is present in other forms of ichthyosis. This mixed phenotype suggests the need for a better understanding of the possible role of filaggrin loss and AP1 transcription factor deficiency in ichthyoses and collodion membrane formation.


Subject(s)
Cell Differentiation/genetics , Ichthyosiform Erythroderma, Congenital/genetics , Intermediate Filament Proteins/genetics , Transcription Factor AP-1/genetics , Animals , Animals, Newborn , Biopsy, Needle , Cells, Cultured , Disease Models, Animal , Filaggrin Proteins , Humans , Ichthyosiform Erythroderma, Congenital/metabolism , Immunohistochemistry , Keratinocytes/metabolism , Mice , Mice, Transgenic , Phenotype , Random Allocation , Sensitivity and Specificity , Signal Transduction , Transcription Factor AP-1/metabolism
17.
J Invest Dermatol ; 137(4): 845-854, 2017 04.
Article in English | MEDLINE | ID: mdl-28017832

ABSTRACT

In this paper, we report three patients with severe palmoplantar keratoderma associated with ichthyosis and sensorineural deafness. Biallelic mutations were found in VPS33B, encoding VPS33B, a Sec1/Munc18 family protein that interacts with Rab11a and Rab25 proteins and is involved in trafficking of the collagen-modifying enzyme LH3. Two patients were homozygous for the missense variant p.Gly131Glu, whereas one patient was compound heterozygous for p.Gly131Glu and the splice site mutation c.240-1G>C, previously reported in patients with arthrogryposis renal dysfunction and cholestasis syndrome. We demonstrated the pathogenicity of variant p.Gly131Glu by assessing the interactions of the mutant VPS33B construct and its ability to traffic LH3. Compared with wild-type VPS33B, the p.Gly131Glu mutant VPS33B had reduced coimmunoprecipitation and colocalization with Rab11a and Rab25 and did not rescue LH3 trafficking. Confirming the cell-based experiments, we found deficient LH3-specific collagen lysine modifications in patients' urine and skin fibroblasts. Additionally, the epidermal ultrastructure of the p.Gly131Glu patients mirrored defects in tamoxifen-inducible VPS33B-deficient Vps33bfl/fl-ERT2 mice. Both patients and murine models revealed an impaired epidermal structure, ascribed to aberrant secretion of lamellar bodies, which are essential for epidermal barrier formation. Our results demonstrate that p.Gly131Glu mutant VPS33B causes an autosomal recessive keratoderma-ichthyosis-deafness syndrome.


Subject(s)
Hearing Loss, Sensorineural/genetics , Ichthyosis, Lamellar/genetics , Keratoderma, Palmoplantar/genetics , Mutation , Vesicular Transport Proteins/genetics , Adolescent , Adult , Animals , Collagen/metabolism , Hearing Loss, Sensorineural/diagnosis , Humans , Ichthyosis, Lamellar/diagnosis , Keratoderma, Palmoplantar/diagnosis , Male , Mice , Prognosis , Rare Diseases , Sampling Studies , Syndrome , rab GTP-Binding Proteins/genetics
18.
J Invest Dermatol ; 137(2): 394-402, 2017 02.
Article in English | MEDLINE | ID: mdl-27751867

ABSTRACT

Mutations in PNPLA1 have been identified as causative for autosomal recessive congenital ichthyosis in humans and dogs. So far, the underlying molecular mechanisms are unknown. In this study, we generated and characterized PNPLA1-deficient mice and found that PNPLA1 is crucial for epidermal sphingolipid synthesis. The absence of functional PNPLA1 in mice impaired the formation of omega-O-acylceramides and led to an accumulation of nonesterified omega-hydroxy-ceramides. As a consequence, PNPLA1-deficient mice lacked a functional corneocyte-bound lipid envelope leading to a severe skin barrier defect and premature death of newborn animals. Functional analyses of differentiated keratinocytes from a patient with mutated PNPLA1 demonstrated an identical defect in omega-O-acylceramide synthesis in human cells, indicating that PNPLA1 function is conserved among mammals and indispensable for normal skin physiology. Notably, topical application of epidermal lipids from wild-type onto Pnpla1-mutant mice promoted rebuilding of the corneocyte-bound lipid envelope, indicating that supplementation of ichthyotic skin with omega-O-acylceramides might be a therapeutic approach for the treatment of skin symptoms in individuals affected by omega-O-acylceramide deficiency.


Subject(s)
Ceramides/biosynthesis , Lipase/physiology , Skin/metabolism , Animals , Ichthyosis/etiology , Lipase/deficiency , Mice , Mice, Inbred C57BL , Permeability
19.
J Invest Dermatol ; 137(3): 706-715, 2017 03.
Article in English | MEDLINE | ID: mdl-27793761

ABSTRACT

Loss-of-function mutations in the FLG gene cause ichthyosis vulgaris (IV) and represent the major predisposing genetic risk factor for atopic dermatitis (AD). Although both conditions are characterized by epidermal barrier impairment, AD also exhibits signs of inflammation. This work was aimed at delineating the role of FLG loss-of-function mutations on eicosanoid metabolism in IV and AD. Using human epidermal equivalents (HEEs) generated with keratinocytes isolated from nonlesional skin of patients with FLG wild-type AD (WT/WT), FLG-mutated AD (FLG/WT), IV (FLG/FLG), or FLG WT control skin, we assessed the potential autocrine role of epidermal-derived eicosanoids in FLG-associated versus FLG-WT AD pathogenesis. Ultrastructural analyses demonstrated abnormal stratum corneum lipid architecture in AD and IV HEEs, independent of FLG genotype. Both AD (FLG/WT) and IV (FLG/FLG) HEEs showed impaired late epidermal differentiation. Only AD (FLG/WT) HEEs exhibited significantly increased levels of inflammatory cytokines. Analyses of lipid mediators revealed increased arachidonic acid and 12-lipoxygenase metabolites. Whereas treatment of control HEEs with arachidonic acid increased expression of inflammatory cytokines, 12-hydroxy-eicosatetraenoic acid attenuated expression of late differentiation markers. Thus, FLG mutations lead to alterations in epidermal eicosanoid metabolism that could serve as an autocrine trigger of inflammation and impaired late epidermal differentiation in AD.


Subject(s)
Dermatitis, Atopic/metabolism , Eicosanoids/metabolism , Epidermis/metabolism , Inflammation/metabolism , Intermediate Filament Proteins/genetics , Adult , Biopsy , Cell Differentiation , Cytokines/metabolism , Dermatitis, Atopic/genetics , Filaggrin Proteins , Genotype , Heterozygote , Homozygote , Humans , Ichthyosis Vulgaris/genetics , Keratinocytes/cytology , Keratinocytes/metabolism , Mutation , Phenotype , Skin/metabolism , Skin/pathology
20.
PLoS One ; 11(8): e0161465, 2016.
Article in English | MEDLINE | ID: mdl-27551807

ABSTRACT

Harlequin Ichthyosis is a severe skin disease caused by mutations in the human gene encoding ABCA12. Here, we characterize a novel mutation in intron 29 of the mouse Abca12 gene that leads to the loss of a 5' splice donor site and truncation of the Abca12 RNA transcript. Homozygous mutants of this smooth skin or smsk allele die perinatally with shiny translucent skin, typical of animal models of Harlequin Ichthyosis. Characterization of smsk mutant skin showed that the delivery of glucosylceramides and CORNEODESMOSIN was defective, while ultrastructural analysis revealed abnormal lamellar bodies and the absence of lipid lamellae in smsk epidermis. Unexpectedly, mutant stratum corneum remained intact when subjected to harsh chemical dissociation procedures. Moreover, both KALLIKREIN 5 and -7 were drastically decreased, with retention of desmoplakin in mutant SC. In cultured wild type keratinocytes, both KALLIKREIN 5 and -7 colocalized with ceramide metabolites following calcium-induced differentiation. Reducing the intracellular levels of glucosylceramide with a glucosylceramide synthase inhibitor resulted in decreased secretion of KALLIKREIN proteases by wild type keratinocytes, but not by smsk mutant keratinocytes. Together, these findings suggest an essential role for ABCA12 in transferring not only lipids, which are required for the formation of multilamellar structures in the stratum corneum, but also proteolytic enzymes that are required for normal desquamation. Smsk mutant mice recapitulate many of the pathological features of HI and can be used to explore novel topical therapies against a potentially lethal and debilitating neonatal disease.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Ichthyosis, Lamellar/genetics , Ichthyosis, Lamellar/pathology , Phenotype , Skin/metabolism , Skin/pathology , Alleles , Animals , Base Sequence , Ceramides/metabolism , Chromosome Mapping , Desmosomes/metabolism , Disease Models, Animal , Epidermis/metabolism , Epidermis/pathology , Epidermis/ultrastructure , Exons , Genes, Recessive , Glucosylceramides/metabolism , Ichthyosis, Lamellar/therapy , Kallikreins/metabolism , Keratinocytes/metabolism , Mice , Models, Biological , Mutation , Permeability , Sequence Analysis, DNA , Skin/ultrastructure , Skin Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...