Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Food Res Int ; 188: 114429, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823856

ABSTRACT

Among the emerging prebiotics, galactooligosaccharide (GOS) has a remarkable value with health-promoting properties confirmed by several studies. In addition, the application of ohmic heating has been gaining prominence in food processing, due to its various technological and nutritional benefits. This study focuses on the transformative potential of ohmic heating processing (OH, voltage values 30 and 60 V, frequencies 100, 300, and 500 Hz, respectively) in prebiotic chocolate milk beverage (3.0 %w/v galactooligosaccharide) processing. Chemical stability of GOS was assessed along all the ohmic conditions. In addition, microbiological analysis (predictive modeling), physical analysis (color and rheology), thermal load indicators assessment, bioactivity values, and volatile compound was performed. HPAEC-PAD analysis confirmed GOS stability and volatile compound evaluation supported OH's ability to preserve flavor-associated compounds. Besides, OH treatments demonstrated superior microbial reduction and decreased thermal load indicators as well as the assessment of the bioactivity. In conclusion, OH presented was able to preserve the GOS chemical stability on chocolate milk beverages processing with positive effects of the intrinsic quality parameters of the product.


Subject(s)
Chocolate , Food Handling , Milk , Oligosaccharides , Oligosaccharides/chemistry , Oligosaccharides/analysis , Chocolate/analysis , Food Handling/methods , Milk/chemistry , Animals , Prebiotics/analysis , Hot Temperature , Beverages/analysis , Rheology , Cacao/chemistry , Volatile Organic Compounds/analysis
2.
Food Res Int ; 188: 114457, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823859

ABSTRACT

The effect of the substitution of emulsifying salt by the young bamboo flour (BF) (0, 25, 50, 75, 100 % w/w) on requeijão cremoso processed cheese [REQ, REQ 25, REQ 75 REQ 100]) processing was investigated. Gross composition, calcium and sodium values, functional properties (melting rate), color parameters (L, a*, b*, C*, and Whiteness Index, WI), texture profile, fatty acid profile, volatile organic compounds (VOCs), and sensory profiling were evaluated. No effect was observed on the gross composition; however, sodium and melting rate values were decreased, and calcium values presented the opposite behavior. BF could modify the optical parameters, observing an increase in WI values. Higher BF addition increased hardness and lowered elasticity, and regarding the fatty acid profile, there is no significant difference. Different volatile compounds were noted in a proportional form with the BF addition, which was reflected in similar sensory acceptance for REQ 25 and control samples. Although some aspects require further in-depth studies, using BF as a substitute for emulsifying salt in requeijão cremoso processed cheese appears to be a viable option, especially when considering partial replacements.


Subject(s)
Cheese , Flour , Food Handling , Volatile Organic Compounds , Cheese/analysis , Flour/analysis , Volatile Organic Compounds/analysis , Food Handling/methods , Humans , Taste , Fatty Acids/analysis , Color , Emulsions/chemistry , Hardness , Calcium/analysis , Calcium/chemistry
3.
Food Res Int ; 186: 114333, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729693

ABSTRACT

Acrylamide is an amide formed in the Maillard reaction, with asparagine as the primary amino acid precursor. The intake of large amounts of acrylamide has induced genotoxic and carcinogenic effects in hormone-sensitive tissues of animals. The enzime asparaginase is one of the most effective methods for lowering the formation of acrylamide in foods such as potatoes. However, the reported sensory outcomes for coffee have been unsatisfactory so far. This study aimed to produce coffees with reduced levels of acrylamide by treating them with asparaginase while retaining their original sensory and bioactive profiles. Three raw samples of Coffea arabica, including two specialty coffees, and one of Coffea canephora were treated with 1000, 2000, and 3000 ASNU of the enzyme. Asparagine and bioactive compounds (chlorogenic acids-CGA, caffeine, and trigonelline) were quantified in raw and roasted beans by HPLC and LC-MS, while the determination of acrylamide and volatile organic compounds was performed in roasted beans by CG-MS. Soluble solids, titratable acidity, and pH were also determined. Professional cupping by Q-graders and consumer sensory tests were also conducted. Results were analyzed by ANOVA-Fisher, MFA, PCA and Cluster analyses, with significance levels set at p ≤ 0.05. Steam treatment alone decreased acrylamide content by 18.4%, on average, and 6.1% in medium roasted arabica and canefora coffees. Average reductions of 32.5-56.0% in acrylamide formation were observed in medium roasted arabica beans when 1000-3000 ASNU were applied. In the canefora sample, 59.4-60.7% reductions were observed. However, steam treatment primarily caused 17.1-26.7% reduction of total CGA and lactones in medium roasted arabica samples and 13.9-22.0% in canefora sample, while changes in trigonelline, caffeine, and other evaluated chemical parameters, including the volatile profiles were minimal. Increasing enzyme loads slightly elevated acidity. The only sensory changes observed by Q-graders and or consumers in treated samples were a modest increase in acidity when 3000 ASNU was used in the sample with lower acidity, loss of mild off-notes in control samples, and increased perception of sensory descriptors. The former was selected given the similarity in chemical outcomes among beans treated with 2000 and 3000 ASNU loads.


Subject(s)
Acrylamide , Asparaginase , Asparagine , Coffea , Coffee , Taste , Acrylamide/analysis , Asparagine/analysis , Coffea/chemistry , Coffee/chemistry , Humans , Volatile Organic Compounds/analysis , Cooking/methods , Alkaloids/analysis , Chlorogenic Acid/analysis , Caffeine/analysis , Male , Food Handling/methods , Maillard Reaction , Hot Temperature , Chromatography, High Pressure Liquid , Seeds/chemistry , Female
4.
Food Microbiol ; 121: 104531, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637091

ABSTRACT

The present study aimed to assess the occurrence and counts of Staphylococcus aureus in Brazilian artisanal cheeses (BAC) produced in five regions of Brazil: Coalho and Manteiga (Northeast region); Colonial and Serrano (South); Caipira (Central-West); Marajó (North); and Minas Artisanal cheeses, from Araxá, Campos das Vertentes, Cerrado, Serro and Canastra microregions (Southeast). The resistance to chlorine-based sanitizers, ability to attach to stainless steel surfaces, and antibiogram profile of a large set of S. aureus strains (n = 585) were assessed. Further, a total of 42 isolates were evaluated for the presence of enterotoxigenic genes (sea, seb, sec, sed, see, seg, sei, sej, and ser) and submitted to typing using pulsed-field gel electrophoresis (PFGE). BAC presented high counts of S. aureus (3.4-6.4 log CFU/g), varying from 25 to 62.5%. From the S. aureus strains (n = 585) assessed, 16% could resist 200 ppm of sodium hypochlorite, whereas 87.6% produced strong ability to attach to stainless steel surfaces, corroborating with S. aureus ability to persist and spread in the environment. Furthermore, the relatively high frequency (80.5%) of multidrug-resistant S. aureus and the presence of enterotoxin genes in 92.6% of the strains is of utmost attention. It reveals the lurking threat of SFP that can survive when conditions are favorable. The presence of enterotoxigenic and antimicrobial-resistant strains of S. aureus in cheese constitutes a potential risk to public health. This result calls for better control of cheese contamination sources, and taking hygienic measures is necessary for food safety. More attention should be paid to animal welfare and hygiene practices in some dairy farms during manufacturing to enhance the microbiological quality of traditional cheese products.


Subject(s)
Cheese , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Staphylococcus aureus/genetics , Cheese/microbiology , Brazil , Food Microbiology , Stainless Steel/analysis , Enterotoxins/genetics , Milk/microbiology
5.
Ultrason Sonochem ; 105: 106867, 2024 May.
Article in English | MEDLINE | ID: mdl-38581799

ABSTRACT

In this initial study, the impact of thermosonication as an alternative to the traditional fusion in Brazilian cheese spread (Requeijão Cremoso) manufacture was investigated. The effect of ultrasound (US) power was evaluated considering various aspects such as gross composition, microstructure, texture, rheology, color, fatty acid composition, and volatile compounds. A 13 mm US probe operating at 20 kHz was used. The experiment involved different US power levels (200, 400, and 600 W) at 85 °C for 1 min, and results were compared to the conventional process in the same conditions (85 °C for 1 min, control treatment). The texture became softer as ultrasound power increased from 200 to 600 W, which was attributed to structural changes within the protein and lipid matrix. The color of the cheese spread also underwent noticeable changes for all US treatments, and treatment at 600 W resulted in increased lightness but reduced color intensity. Moreover, the fatty acid composition of the cheese spread showed variations with different US power, with samples treated at 600 W showing lower concentrations of saturated and unsaturated fatty acids, as well as lower atherogenicity and thrombogenicity indexes, indicating a potentially healthier product. Volatile compounds were also influenced by US, with less compounds being identified at higher powers, especially at 600 W. This could indicate possible degradation, which should be evaluated in further studies regarding US treatment effects on consumer perception. Hence, this initial work demonstrated that thermosonication might be interesting in the manufacture of Brazilian cheese spread, since it can be used to manipulate the texture, color and aroma of the product in order to improve its quality parameters.


Subject(s)
Cheese , Cheese/analysis , Sonication/methods , Brazil , Food Handling/methods , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Fatty Acids/chemistry , Color , Temperature
6.
J Dairy Sci ; 107(1): 155-168, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37709020

ABSTRACT

Ohmic heating may improve bioactive compounds and processing, ensuring food safety of beverages, liquid and pasty food, or liquid with solid pieces. Due to those traits, this study conducted a comparison between ohmic heating technology and conventional heating (CH), with a focus on assessing the impact of both methods on functional compounds (such as angiotensin-converting enzyme inhibition, α-amylase and α-glucosidase inhibition, and antioxidant activity) in both fresh and thawed raw sheep milk, which had been frozen for up to 3 mo. Different ohmic heating conditions were applied and compared to CH (3.33-8.33 V/cm vs. CH [73°C/15 s]). A total of 18 peptides with some functional activities were identified by MALDI-TOF mass spectrometry analysis. Ohmic heating samples presented the highest activities related to health, followed by CH and raw milk samples; antioxidant activity range was from 0.11% to 0.71%, antihypertensive activity ranged from 0.20% to 0.72%, and antidiabetic activity ranged from 0.21% to 0.79%. Of 51 volatile compounds detected, some were degraded by freezing, storing, and heating the sheep milk. This study showed for the first time that ohmic heating processing improved sheep milk bioactive peptides and preserved volatile compounds.


Subject(s)
Antioxidants , Milk , Animals , Sheep , Milk/chemistry , Antioxidants/analysis , Heating , Beverages/analysis , Peptides/analysis , Hot Temperature
7.
J Food Sci ; 89(1): 640-655, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38018251

ABSTRACT

Boursin is a versatile semisoft cheese that can be made with different types of milk. While widely distributed in the European and North American markets, Boursin is produced to a limited extent in Brazil despite its commercial potential. This scenario encourages consumer-oriented product development studies by facilitating data collection with less bias and fewer product preconceptions, thus favoring the investigation of technological aspects of commercial interest. This study evaluates Brazilians' perceptions regarding different versions of Boursin cheese, with the aim of gaining a better understanding of the factors related to choosing cheese. Four attributes related to cheese production were evaluated at three different levels using two discrete choice experiments: one with eye tracking (n = 20) and another without (n = 312). These attributes included "type of processing" (evaluating pasteurization, ohmic heating, and preparation with raw milk), "animal origin of milk" (cow, goat, or buffalo milk), "type of product" (traditional, light, and lactose-free versions), and "price" (10.99, 13.99, and 16.99 BRL). Information regarding processing with ohmic heating did not affect the probability of Boursin being chosen, suggesting that consumers are open to using this emerging technology in Boursin cheese. However, information on being made with goat, buffalo, and raw milk negatively impacted the probability of choice, along with the price of 16.99 BRL. The frequency of cheese consumption and the level of health concerns also affected the probability of choosing the product. PRACTICAL APPLICATION: Identifying the relationship between extrinsic attributes presented on the Boursin cheese label and the consumer's choice process can aid the communication process with the target audience and reveal how some technological issues of interest to manufacturers are perceived. This study indicates how information regarding the animal origin of the milk (cow, goat, and buffalo), the type of processing (pasteurization, ohmic heating, and raw milk), the version of the product (traditional, light, and lactose-free), and the price affect the consumer choice process. The results provide insights that can be applied to product processing and designing labels.


Subject(s)
Cheese , Consumer Behavior , South American People , Animals , Cattle , Female , Humans , Bison , Buffaloes , Eye-Tracking Technology , Goats , Lactose , Milk
8.
Food Res Int ; 174(Pt 1): 113579, 2023 12.
Article in English | MEDLINE | ID: mdl-37986447

ABSTRACT

Honey is a food product consumed all over the world. Besides its nutritional properties, honey presents antibacterial, antioxidant, and wound-healing properties. To ensure that the final product meets qualitative and microbiological standards, honey treatment is of great importance. Conventional honey treatment is based on the heating of honey samples for decrystallization and bacteria and yeast inactivation. However, conventional heating can cause negative effects on honey quality, such as the formation of toxic compounds, reduction of enzyme activity, and loss of antioxidant and antimicrobial properties. The application of ultrasonic waves has demonstrated interesting effects on honey processing. Ultrasound (US) treatment can lead to the fragmentation of glucose crystals in crystalized honey and has little effect on its properties. In addition to inactivating microorganisms, US-assisted honey processing also preserves phenolic compounds content and antimicrobial properties. However, there is still limited information about honey sonication. The aim of the present review is to comprehensively show the possibilities of US application in honey processing and its effects on honey properties.


Subject(s)
Honey , Honey/analysis , Antioxidants , Phenols/analysis , Anti-Bacterial Agents/pharmacology
9.
Food Res Int ; 174(Pt 2): 113659, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37981376

ABSTRACT

Dairy products stand out as a food matrix susceptible to the contamination of heavy metals via cattle feed and environmental or processing conditions. Specifically, in the case of cheese, the concentrations can be further increased depending on the production process. The artisanal cheese market has been standing out, especially in Brazil, due to cultural and gastronomic reasons. Eight types of Brazilian artisanal cheese were analyzed for metal concentrations (chromium, copper, cadmium, lead, arsenic, and mercury, n = 80, 10 samples of each cheese) using inductively coupled plasma mass spectrometry. Based on the results, a health risk assessment was carried out, based on the determination of estimated daily intake, target hazard quotient (THQ), and hazard index (HI). Variable concentrations were observed between the types of cheese, but in all cases the THQ and HI values were less than 1, indicating an absence of potential risk in the consumption of artisanal cheeses in relation to the intake of heavy metals.


Subject(s)
Arsenic , Cheese , Metals, Heavy , Animals , Cattle , Brazil , Risk Assessment
10.
Int J Food Microbiol ; 407: 110424, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-37806011

ABSTRACT

This study aimed to estimate the risk of listeriosis from the consumption of pasteurized milk in Brazil, comparing conventional treatment with the technology of thermosonication. The Quantitative Microbiological Risk Assessment (QMRA) model was developed, covering the entire milk production chain, from milking to the moment of consumption. In general, higher risks were observed in association with higher initial concentrations of the pathogen and the vulnerable population. The highest risk predicted (3.67 × 10-5) was related to the scenario considering the initial concentration range of L. monocytogenes between 4 and 6 log CFU/mL, with conventional treatment and considering the vulnerable population, resulting in one case of listeriosis every 27,248 servings. When considering thermosonication treatment, lower risks have been predicted. The scenario analysis indicated that the steps related to storage conditions in retail and at the consumer's home (post-processing steps) are the most influential in the associated risk, in all scenarios. The predictive parameters of inactivation related to the applied treatment also have a considerable influence on the risk. The results point to the influence of the stages of the dairy production chain and the thermosonication treatment applied in the food safety of milk, subsidizing information for industrial application and for regulatory agencies.


Subject(s)
Listeria monocytogenes , Listeriosis , Humans , Animals , Pasteurization , Milk/microbiology , Brazil/epidemiology , Listeriosis/epidemiology , Risk Assessment , Food Microbiology
11.
Article in English | MEDLINE | ID: mdl-37432597

ABSTRACT

Due to its physiological benefits from in vitro and in vivo points of view, Akkermansia muciniphila, a common colonizer in the human gut mucous layer, has consistently been identified as an option for the next-generation probiotic. A. muciniphila is a significant bacterium that promotes host physiology. However, it also has a great deal of potential to become a probiotic due to its physiological advantages in a variety of therapeutic circumstances. Therefore, it can be established that the abundance of A. muciniphila in the gut environment, which is controlled by many genetic and dietary variables, is related to the biological behaviors of the intestinal microbiota and gut dysbiosis/eubiosis circumstances. Before A. muciniphila is widely utilized as a next-generation probiotic, regulatory obstacles, the necessity for significant clinical trials, and the sustainability of manufacturing must be eliminated. In this review, the outcomes of recent experimental and clinical reports are comprehensively reviewed, and common colonization patterns, main factors involved in the colonization of A. muciniphila in the gut milieu, their functional mechanisms in establishing homeostasis in the metabolic and energy pathways, the promising delivery role of microencapsulation, potential genetic engineering strategies, and eventually safety issues of A. muciniphila have been discussed.

12.
Food Res Int ; 170: 113003, 2023 08.
Article in English | MEDLINE | ID: mdl-37316072

ABSTRACT

This study investigated the microstructure, rheological properties, and sensory characteristics of butters produced with free and encapsulated xylooligosaccharides (XOS). Four formulations of butter were processed: BCONT: 0 % w/w XOS (control); BXOS: 20% w/w free XOS; BXOS-ALG: 20% w/w XOS microencapsulated with alginate (XOS-alginate ratio of 3:1 w/w); and BXOS-GEL: 20% w/w XOS microencapsulated with alginate-gelatin (XOS-alginate-gelatin ratio of 3:1:1.5 w/w). The microparticles showed a bimodal distribution, low size and low span values, demonstrating physical stability to be included in emulsions. The XOS-ALG presented surface weighted mean diameter (D3.2) of 90.24 µm, volume-weighted mean diameter (D4.3) of 131.8 µm, and Span of 2.14. In contrast, the XOS-GEL presented D3.2 of 82.80 µm, D4.3 of 141.0 µm, and a Span of 2.46. Products with XOS were characterized by higher creaminess, sweet taste, and lower salty taste than the control. However, the addition form significantly impacted the other evaluated parameters. The utilization of XOS in a free form (BXOS) resulted in smaller droplet sizes (1.26 µm) than encapsulated XOS and control (XOS-ALG = 1.32 µm / XOS-GEL = 1.58 µm, / BCONT = 1.59 µm), and changes in the rheological parameters (higher values of shear stress, viscosity, consistency index, rigidity (J0), and Newtonian viscosity (ηN) and lower elasticity (τ)). Furthermore, it changed the color parameters (more yellow and dark color, lower L* and higher b* values). On the other hand, the utilization of micropaticles of XOS (BXOS-ALG and BXOS-GEL) kept shear stress, viscosity, consistency index, rigidity (J0), and elasticity (τ) more similar to control. The products had a less intense yellow color (lower b* values) and was perceived with more consistency and butter taste. However, the presence of particles was perceived by consumers. The results suggest that consumers were more attentive to reporting flavor-related attributes than texture. In conclusion, adding microparticles of XOS could improve butter's rheological and sensory properties. In conclusion, adding microparticles of XOS could improve butter's rheological and sensory properties.


Subject(s)
Alginates , Gelatin , Elasticity
13.
Food Res Int ; 167: 112663, 2023 05.
Article in English | MEDLINE | ID: mdl-37087253

ABSTRACT

Thermal processes can be very damaging to the nutritional and sensory quality of foods. Non-thermal technologies have been applied to reduce the impact of heat on food, reducing processing time and increasing its efficiency. Among many non-thermal technologies, cold plasma is an emerging technology with several potential applications in food processing. This technique can be used to preserve and sanitize food products, and act as a pre-treatment for drying, extraction, cooking, curing, and hydrogenation of foods. Furthermore, the reacting plasma species formed during the plasma application can change positively the sensory and nutritional aspects of foods. The aim of this review is to analyze the main findings on the application of cold plasma as a pre-treatment technology to improve food processing. In its current maturity stage, the cold plasma technology is suitable for reducing drying time, increasing extraction efficiency, as well as curing meats. This technology can convert unsaturated into saturated fats, without forming trans isomers, which can be an alternative to healthier foods. Although many advantages come from cold plasma applications, this technology still has several challenges, such as the scaling up, especially in increasing productivity and treating foods with large formats. Optimization and control of the effects of plasma on nutritional and sensory quality are still under investigation. Further improvement of the technology will come with a higher knowledge of the effects of plasma on the different chemical groups present in foods, and with the development of bigger or more powerful plasma systems.


Subject(s)
Plasma Gases , Food , Food Handling/methods , Food Quality , Food Preservation/methods
14.
Food Res Int ; 167: 112702, 2023 05.
Article in English | MEDLINE | ID: mdl-37087267

ABSTRACT

Due to the intense competition in the sector, the dairy market maintains a constant search for innovations. Thus, new technologies are incorporated, and new products are constantly launched, increasing the range of consumer options. In this way, the understanding of consumers' motivations, attitudes, and behaviors in the moments of choice, purchase, and consumption are important for the academic public and food industries. This study used the Text Highlighting methodology to assess Brazilian consumers' explicit attitudes towards using high-intensity ultrasound technology in Minas Frescal cheese processing. In the task, consumers were asked to highlight in a text the terms they "liked" or "disliked" about using high-intensity ultrasound in the Minas Frescal cheese processing. A seven-point Likert scale was also used to assess consumers' attitudinal statements. A high engagement of consumers with the Text Highlighting methodology could be observed (43.8-92.3% of text highlighting), which suggests good intuitiveness of the technique. Including information about the benefits of the emerging technology in the product, mainly on sensory and nutritional properties, may increase positive consumer perception, as it promotes the consumers to express their value judgment in the form of "liked". At the same time, the harms of the traditional processing technique prompted consumers to express their value judgment in the "disliked" highlights. It was observed that information should be in a simple and direct language, as technical terminology in the text did not have a positive effect. The categorizing of consumers according to the sentimental score showed that consumers are still reticent to use emerging technologies in Minas Frescal cheese processing. Consumers' attitudinal statements demonstrated that consumers perceive high-intensity ultrasound as a positive idea and safety technology for Minas Frescal cheese processing. Still, they are not willing to pay premium prices. In conclusion, Text Highlighting produced valuable insights that can be used in communication strategies with Minas Frescal cheese consumers.


Subject(s)
Cheese , Consumer Behavior , Brazil
15.
Food Res Int ; 165: 112517, 2023 03.
Article in English | MEDLINE | ID: mdl-36869518

ABSTRACT

Flavored milk drink is a popular dairy product traditionally processed by pasteurization, which is a safe and robust process. Still, it can imply a greater energy expenditure and a more significant sensorial alteration. Ohmic heating (OH) has been proposed as an alternative to dairy processing, including flavored milk drink. However, its impact on sensory characteristics needs to be evidenced. This study used Free Comment, an underexplored methodology in sensory studies, to characterize five samples of high-protein vanilla-flavored milk drink: PAST (conventional pasteurization 72 °C/15 s); OH6 (ohmic heating at 5.22 V/cm); OH8 (ohmic heating at 6.96 V/cm); OH10 (ohmic heating at 8.70 V/cm), and OH12 (ohmic heating at 10.43 V/cm). Free Comment raised similar descriptors to those found in studies that used more consolidated descriptive methods. The employed statistical approach allowed observation that pasteurization and OH treatment have different effects on the sensory profile of products, and the electrical field strength of OH also has a significant impact. PAST was slightly to moderately negatively associated with "acid taste," "fresh milk taste," "smoothness," "sweet taste," "vanilla flavor," "vanilla aroma," "viscous," and "white color." On the other hand, OH processing with more intense electric fields (OH10 and OH12) produced flavored milk drinks strongly associated with the "in natura" milk descriptors ("fresh milk aroma" and "fresh milk taste"). Furthermore, the products were characterized by the descriptors "homogeneous," "sweet aroma," "sweet taste," "vanilla aroma," "white color," "vanilla taste," and "smoothness." In parallel, less intense electric fields (OH6 and OH8) produced samples more associated with a bitter taste, viscosity, and lumps presence. Sweet taste and fresh milk taste were the drivers of liking. In conclusion, OH with more intense electric fields (OH10 and OH12) was promising in flavored milk drink processing. Furthermore, the free comment was a valuable approach to characterize and identify the drivers of liking of high-protein flavored milk drink submitted to OH.


Subject(s)
Taste , Vanilla , Animals , Milk , Heating , Emotions , Candy , Flavoring Agents
16.
Food Res Int ; 164: 112396, 2023 02.
Article in English | MEDLINE | ID: mdl-36737979

ABSTRACT

The effect of probiotic strains (Lactobacillus acidophilus La-03 (La-03); Lactobacillus acidophilus La-05 (La-05); Bifidobacterium Bb-12 (Bb-12) or Lacticaseibacillus casei-01 (L. casei-01)) on the characteristics of fermented whey-milk beverages during storage (4 °C, 30 days) was evaluated. The products were assessed for biological and antioxidant activities, physicochemical characteristics, and bioactive peptides. Probiotic addition increased α-amylase and α-glucosidase inhibition and antioxidant activities, mainly at 15 days of storage. L. casei-01 showed higher metabolic activity (higher titratable acidity and lower pH values) and the presence of anti-hypertensive peptides, while La-5 and Bb-12 showed higher α-glucosidase inhibition, improvements in the high saturated hypercholesterolemic index, and peptides with ACE-inhibitory, antimicrobial, immunomodulatory, and antioxidant activities. Our findings suggest that probiotic fermented whey-milk beverages may exert antidiabetic and antioxidant properties, being suggested La-5 or Bb-12 as probiotics and 15 days of storage.


Subject(s)
Fermented Beverages , Probiotics , Animals , alpha-Glucosidases/metabolism , Antioxidants/analysis , Fermentation , Lacticaseibacillus casei , Milk/chemistry , Peptides/analysis , Probiotics/metabolism , Whey/chemistry , Whey Proteins/chemistry , Fermented Beverages/microbiology
17.
Ultrason Sonochem ; 92: 106260, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36502682

ABSTRACT

Minas frescal cheese is extremely popular in Brazil, with high perishability and acceptability. Among emerging technologies, ultrasound stands out for its satisfactory results regarding microbiological safety and technological and sensory aspects. The combined mild temperature application, called thermosonication, can generate even more promising results. In this study, a high-intensity ultrasound system combined with thermal heating (TS, thermosonication) was applied for the treatment of raw milk to produce Minas Frescal cheese. US energy was delivered to raw milk samples using a probe operating at a 20 kHz of frequency and nominal power of 160, 400, and 640 W. The TS system was compared with conventional pasteurization (HTST, high-temperature short-time pasteurization) at 72 to 75 °C and 15 s. Soft cheeses were prepared with different samples: (a) raw milk (control), b)conventionally pasteurized milk (HTST), and c) TS treat milk in different nominal power (TS160, TS400, and TS640). The produced cheeses were evaluated for microbiological behavior, rheology, color parameters, and bioactive compounds. TS treatment in milk resulted in higher microbial inactivation and stability during storage, improved color parameters (higher lightness (L*), and whiteness index (WI). TS treatment also showed a higher generation of bioactive compounds (higher antioxidant, and inhibitory activities of α-amylase, α-glucosidase, and angiotensin-converting enzymes) than HTST. The impact of TS on rheological properties was similar to HTST, resulting in more brittle and less firm products than the cheese produced with raw milk. The positive effects were more prominent using a nominal power of 400 W (TS400). Therefore, TS proved to be a promising process for processing milk for Minas Frescal cheese production.


Subject(s)
Cheese , Animals , Cheese/analysis , Milk/microbiology , Pasteurization , Brazil , Temperature
18.
Food Sci Nutr ; 10(10): 3259-3271, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36249978

ABSTRACT

Energy restriction and manipulation of macronutrient composition of the diet are the main approaches that are used by people who aim to lose weight. When such strategies are employed, appetite and endocrine regulators of satiety, such as gut peptides, all are deeply affected. The gut microbiota-brain axis controls energy homeostasis in humans by affecting central satiety and gut peptides. The purpose of this study was to evaluate if the synergistic effect of probiotics and vitamin D in yogurt matrix can modulate this effect. In the double-blind, randomized, placebo-controlled trial, 140 obese adults were randomly allocated into four groups: 1) regular yogurt plus low-calorie diet; 2) PY plus low-calorie diet; 3) vitamin D-fortified yogurt plus low-calorie diet, and 4) probiotic and vitamin D co-fortified yogurt plus low-calorie diet. All groups were encouraged to increase their physical activity. Glucagon-like peptide-1 (GLP-1), peptide Tyrosin-Tysrosin (PYY), ghrelin, anthropometric variables, insulin, fasting blood sugar (FBS), insulin resistance/sensitivity, 1,25(OH)2 D3, dietary intake, and physical activity were measured before and after 10 weeks. The difference between groups for GLP-1 after 10 weeks was significant after adjusting for baseline GLP-1 and protein intake as confounders. PY showed the largest effect size (ES) on GLP-1 (p = 14.2) and FBS (p = 14) compared with others. Pairwise comparison of yogurts effect sizes on GLP-1 showed a significant difference in group 1 vs. group 2 (p = .001), group 1 vs. group 3 (p = .003), and group 1 vs. group 4 (p = .048). Vitamin D-fortified yogurt had the largest effect size on the serum level of vitamin D and it showed a significant difference with RY (p = .018) and PY (p = .002). Consumption of vitamin D-fortified yogurt and PY could be regarded as a promising approach during calorie restriction.

19.
Food Res Int ; 161: 111827, 2022 11.
Article in English | MEDLINE | ID: mdl-36192960

ABSTRACT

The processing of high-protein vanilla-flavored milk was performed under different electric field strengths of ohmic heating (5.22 V/cm, OH6; 6.96 V/cm, OH8; 8.70 V/cm, OH10; 10.43 V/cm, OH12) to evaluate the energy consumption, processing parameters, and microbiological, rheological, and biological aspects, compared with the sample submitted to conventional pasteurization (PAST, 72 °C/15 s). All samples showed higher than 12 g/100 mL of protein, consisting of high-protein content products. In addition, Ohmic Heating (OH) generated lower energy expenditure and more significant microbial inactivation of lactic acid bacteria, molds and yeasts, total mesophiles, and psychotropics. Furthermore, OH at lower electric field strengths, mainly OH8, improved anti-diabetic, anti-oxidant, and anti-hypertensive activities and rheological properties, and resulted in lower hydroxymethylfurfural contents, and higher whey protein nitrogen index. The results suggest that OH is a technology that can be used in flavored milk with high-protein content, being recommended an electric field strength of 6.96 V/cm. However, more studies are necessary to evaluate the effect of OH on high-protein dairy products, mainly by studying other OH processing parameters.


Subject(s)
Milk , Vanilla , Animals , Antihypertensive Agents , Antioxidants/analysis , Heating/methods , Hot Temperature , Milk/chemistry , Nitrogen , Whey Proteins
20.
Food Res Int ; 157: 111272, 2022 07.
Article in English | MEDLINE | ID: mdl-35761584

ABSTRACT

The trends related to ohmic heating technology in food processing were evaluated using bibliometric analysis based on the scientific literature published in the last decade. Publications from Turkey, Brazil, and Iran represent 32% of all publications. Most studies have targeted the definition of the best combinations of operational parameters for application in different food matrices and their possible effects on the food properties. In addition, a tendency to use ohmic heating as an alternative technology for pasteurization was observed. Future studies should develop mathematical models that evaluate process parameters and food characteristics in the inactivation of microorganisms and enzymes and maintenance of bioactive compounds, the study of the non-thermal effect of electromagnetic waves on the food quality, the evaluation of the processing conditions and food physicochemical properties in the electrode corrosion and migration of metal ions to the treated food, and improvements of homogeneity during processing. This study was the first to perform a bibliometric analysis based on scientific literature concerning ohmic heating in food processing and presented the challenges, future trends, and evolution of scientific research.


Subject(s)
Heating , Hot Temperature , Bibliometrics , Food Handling , Pasteurization
SELECTION OF CITATIONS
SEARCH DETAIL
...