Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 20(1)2023 01 18.
Article in English | MEDLINE | ID: mdl-36595316

ABSTRACT

Objective.Error-related potential (ErrP) is a potential elicited in the brain when humans perceive an error. ErrPs have been researched in a variety of contexts, such as to increase the reliability of brain-computer interfaces (BCIs), increase the naturalness of human-machine interaction systems, teach systems, as well as study clinical conditions. Still, there is a significant challenge in detecting ErrP from a single trial, which may hamper its effective use. The literature presents ErrP detection accuracies quite variable across studies, which raises the question of whether this variability depends more on classification pipelines or on the quality of elicited ErrPs (mostly directly related to the underlying paradigms).Approach.With this purpose, 11 datasets have been used to compare several classification pipelines which were selected according to the studies that reported online performance above 75%. We also analyze the effects of different steps of the pipelines, such as resampling, window selection, augmentation, feature extraction, and classification.Main results.From our analysis, we have found that shrinkage-regularized linear discriminant analysis is the most robust method for classification, and for feature extraction, using Fisher criterion beamformer spatial features and overlapped window averages result in better classification performance. The overall experimental results suggest that classification accuracy is highly dependent on user tasks in BCI experiments and on signal quality (in terms of ErrP morphology, signal-to-noise ratio (SNR), and discrimination).Significance.This study contributes to the BCI research field by responding to the need for a guideline that can direct researchers in designing ErrP-based BCI tasks by accelerating the design steps.


Subject(s)
Brain-Computer Interfaces , Humans , Electroencephalography/methods , Reproducibility of Results , Brain , Man-Machine Systems , Algorithms
2.
J Neural Eng ; 19(6)2022 12 12.
Article in English | MEDLINE | ID: mdl-36541535

ABSTRACT

Objective.Brain-computer interfaces (BCIs) are emerging as promising cognitive training tools in neurodevelopmental disorders, as they combine the advantages of traditional computerized interventions with real-time tailored feedback. We propose a gamified BCI based on non-volitional neurofeedback for cognitive training, aiming at reaching a neurorehabilitation tool for application in autism spectrum disorders (ASDs).Approach.The BCI consists of an emotional facial expression paradigm controlled by an intelligent agent that makes correct and wrong actions, while the user observes and judges the agent's actions. The agent learns through reinforcement learning (RL) an optimal strategy if the participant generates error-related potentials (ErrPs) upon incorrect agent actions. We hypothesize that this training approach will allow not only the agent to learn but also the BCI user, by participating through implicit error scrutiny in the process of learning through operant conditioning, making it of particular interest for disorders where error monitoring processes are altered/compromised such as in ASD. In this paper, the main goal is to validate the whole methodological BCI approach and assess whether it is feasible enough to move on to clinical experiments. A control group of ten neurotypical participants and one participant with ASD tested the proposed BCI approach.Main results.We achieved an online balanced-accuracy in ErrPs detection of 81.6% and 77.1%, respectively for two different game modes. Additionally, all participants achieved an optimal RL strategy for the agent at least in one of the test sessions.Significance.The ErrP classification results and the possibility of successfully achieving an optimal learning strategy, show the feasibility of the proposed methodology, which allows to move towards clinical experimentation with ASD participants to assess the effectiveness of the approach as hypothesized.


Subject(s)
Autism Spectrum Disorder , Brain-Computer Interfaces , Humans , Electroencephalography/methods , Learning , Reinforcement, Psychology
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1651-1656, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946213

ABSTRACT

This paper analyzes the galvanic skin response (GSR) recorded from healthy and motor disabled people while steering a robotic wheelchair (RobChair ISR-UC prototype), to infer whether GSR can help in the recognition of stressful situations. Seven healthy individuals and six individuals with motor disabilities were asked to drive the RobChair by means of a brain-computer interface in indoor office environments, including complex scenarios such as passing narrow doors, avoiding obstacles, and with situations of unexpected trajectories of the wheelchair (controlled by an operator without users knowledge). All these driving situations can trigger emotional arousals such as anxiety and stress. A method called feature-based peak detection (FBPD) was proposed for automatic detection of skin conductance response (SCR) which proved to be very effective compared to the state-of-the-art methods. We found that SCR was elicited in 100% of the occurrences of collisions (lateral scrapings) and 94% of unexpected trajectories.


Subject(s)
Brain-Computer Interfaces , Robotics , Wheelchairs , Galvanic Skin Response , Humans , User-Computer Interface
4.
IEEE Trans Neural Syst Rehabil Eng ; 26(1): 26-36, 2018 01.
Article in English | MEDLINE | ID: mdl-28945598

ABSTRACT

Brain-computer interface (BCI) is a useful device for people with severe motor disabilities. However, due to its low speed and low reliability, BCI still has a very limited application in daily real-world tasks. This paper proposes a P300-based BCI speller combined with a double error-related potential (ErrP) detection to automatically correct erroneous decisions. This novel approach introduces a second error detection to infer whether wrong automatic correction also elicits a second ErrP. Thus, two single-trial responses, instead of one, contribute to the final selection, improving the reliability of error detection. Moreover, to increase error detection, the evoked potential detected as target by the P300 classifier is combined with the evoked error potential at a feature-level. Discriminable error and positive potentials (response to correct feedback) were clearly identified. The proposed approach was tested on nine healthy participants and one tetraplegic participant. The online average accuracy for the first and second ErrPs were 88.4% and 84.8%, respectively. With automatic correction, we achieved an improvement around 5% achieving 89.9% in spelling accuracy for an effective 2.92 symbols/min. The proposed approach revealed that double ErrP detection can improve the reliability and speed of BCI systems.


Subject(s)
Brain-Computer Interfaces , Communication Aids for Disabled , Event-Related Potentials, P300/physiology , Adult , Algorithms , Brain-Computer Interfaces/classification , Calibration , Electroencephalography/classification , Equipment Design , Feedback, Psychological , Female , Healthy Volunteers , Humans , Male , Online Systems , Reproducibility of Results , Young Adult
5.
Comput Biol Med ; 59: 42-53, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25677576

ABSTRACT

BACKGROUND: The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects' variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects' variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules. METHODS: An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep--N1, N2 and N3, and rapid eye movement (REM) sleep. RESULTS: The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages. CONCLUSIONS: This approach provides reliable sleep staging results for non-dubious epochs.


Subject(s)
Polysomnography/methods , Signal Processing, Computer-Assisted , Sleep Stages/physiology , Adult , Aged , Decision Trees , Electroencephalography , Electrooculography , Female , Humans , Male , Middle Aged , Sleep Wake Disorders/physiopathology , Support Vector Machine , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...