Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 153(23): 234504, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33353314

ABSTRACT

The temperature-dependent fluorescence spectrum, decay rate, and spin quantum beats are examined in single tetracene crystals to gain insight into the mechanism of singlet fission. Over the temperature range of 250 K-500 K, the vibronic lineshape of the emission indicates that the singlet exciton becomes localized at 400 K. The fission process is insensitive to this localization and exhibits Arrhenius behavior with an activation energy of 550 ± 50 cm-1. The damping rate of the triplet pair spin quantum beats in the delayed fluorescence also exhibits an Arrhenius temperature dependence with an activation energy of 165 ± 70 cm-1. All the data for T > 250 K are consistent with direct production of a spatially separated 1(T⋯T) state via a thermally activated process, analogous to spontaneous parametric downconversion of photons. For temperatures in the range of 20 K-250 K, the singlet exciton continues to undergo a rapid decay on the order of 200 ps, leaving a red-shifted emission that decays on the order of 100 ns. At very long times (≈1 µs), a delayed fluorescence component corresponding to the original S1 state can still be resolved, unlike in polycrystalline films. A kinetic analysis shows that the redshifted emission seen at lower temperatures cannot be an intermediate in the triplet production. When considered in the context of other results, our data suggest that the production of triplets in tetracene for temperatures below 250 K is a complex process that is sensitive to the presence of structural defects.

2.
Chem Sci ; 10(32): 7561-7573, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31489171

ABSTRACT

Covalently tethered bichromophores provide an ideal proving ground to develop strategies for controlling excited state behavior in chromophore assemblies. In this work, optical spectroscopy and electronic structure theory are combined to demonstrate that the oxidation state of a sulfur linker between anthracene chromophores gives control over not only the photophysics but also the photochemistry of the molecules. Altering the oxidation state of the sulfur linker does not change the geometry between chromophores, allowing electronic effects between chromophores to be isolated. Previously, we showed that excitonic states in sulfur-bridged terthiophene dimers were modulated by electronic screening of the sulfur lone pairs, but that the sulfur orbitals were not directly involved in these states. In the bridged anthracene dimers that are the subject of the current paper, the atomic orbitals of the unoxidized S linker can actively mix with the anthracene molecular orbitals to form new electronic states with enhanced charge transfer character, different excitonic coupling, and rapid (sub-nanosecond) intersystem crossing that depends on solvent polarity. However, the fully oxidized SO2 bridge restores purely through-space electronic coupling between anthracene chromophores and inhibits intersystem crossing. Photoexcitation leads to either internal conversion on a sub-20 picosecond timescale, or to the creation of a long-lived emissive state that is the likely precursor of the intramolecular [4 + 4] photodimerization. These results illustrate how chemical modification of a single atom in the covalent bridge can dramatically alter not only the photophysics but also the photochemistry of molecules.

3.
J Am Chem Soc ; 137(39): 12552-64, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26331195

ABSTRACT

Symmetric dimers have the potential to optimize energy transfer and charge separation in optoelectronic devices. In this paper, a combination of optical spectroscopy (steady-state and time-resolved) and electronic structure theory is used to analyze the photophysics of sulfur-bridged terthiophene dimers. This class of dimers has the unique feature that the interchromophore (intradimer) electronic coupling can be modified by varying the oxidation state of the bridging sulfur from sulfide (S), to sulfoxide (SO), to sulfone (SO2). Photoexcitation leads to the formation of a delocalized charge resonance state (S1) that relaxes quickly (<10 ps) to a charge-transfer state (S1*). The amount of charge-transfer character in S1* can be enhanced by increasing the oxidation state of the bridging sulfur group as well as the solvent polarity. The S1* state has a decreased intersystem crossing rate when compared to monomeric terthiophene, leading to an enhanced photoluminescence quantum yield. Computational results indicate that electrostatic screening by the bridging sulfur electrons is the key parameter that controls the amount of charge-transfer character. Control of the sulfur bridge oxidation state provides the ability to tune interchromophore interactions in covalent assemblies without altering the molecular geometry or solvent polarity. This capability provides a new strategy for the design of functional supermolecules with applications in organic electronics.


Subject(s)
Electrons , Models, Molecular , Sulfur/chemistry , Thiophenes/chemistry , Dimerization , Oxidation-Reduction
4.
J Phys Chem A ; 118(28): 5349-54, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-24978589

ABSTRACT

9-tert-Butylanthracene undergoes a photochemical reaction to form its strained Dewar isomer, which thermally back-reacts to reform the original molecule. When 9-tert-butylanthracene is dissolved in a polymer host, we find that both the forward and reverse isomerization rates are pressure-dependent. The forward photoreaction rate, which reflects the sum of contributions from photoperoxidation and Dewar isomerization, decreases by a factor of 1000 at high pressure (1.5 GPa). The back-reaction rate, on the other hand, increases by a factor of ∼3 at high pressure. Despite being highly strained and higher volume, the back-reaction reaction rate of the Dewar isomer is at least 100× less sensitive to pressure than that of the bi(anthracene-9,10-dimethylene) photodimer studied previously by our group. These results suggest that the high pressure sensitivity of the bi(anthracene-9,10-dimethylene) photodimer reaction is not just due to the presence of strained four-membered rings but instead relies on the unique molecular geometry of this molecule.


Subject(s)
Anthracenes/chemistry , Isomerism , Kinetics , Molecular Structure , Photochemical Processes , Pressure , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...