Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Diagn Cytopathol ; 52(3): 171-182, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38124281

ABSTRACT

BACKGROUND: Genomic profiling using next-generation sequencing (NGS) is fundamental for driving prognostic and therapy in cancer. Formalin-fixed paraffin embedded (FFPE) tissue is the widely used material, whereas non-FFPE may represent an alternative. However, studies comparing the NGS performance of non-FFPE materials to FFPE are still lacking in the literature. The objective of this study was to characterize in non-FFPE preparations the nucleic acid yield and NGS performance on both a capture-based and an amplicon-based NGS platform. NGS quality metrics obtained from non-FFPE preparations were compared to FFPE. METHODS: We analyzed the cellularity and nucleic acid yield in 111 tumors from non-FFPE preparations. In addition, comprehensive hybrid capture panel sequencing metrics obtained from DNA and RNA libraries were compared between independent non-FFPE and FFPE samples. A paired comparison between non-FFPE and FFPE samples was performed to analyze concordance in mutant allele detection using an amplicon panel. RESULTS: The mean target coverage from DNA libraries was 2× higher in non-FFPE samples than in FFPE. The detection of exogenous DNA was 2.5× higher in non-FFPE than in FFPE. Conversely, a lower performance was observed in non-FFPE RNA libraries in comparison to FFPE DNA libraries with no impact in minimum standard cutoffs. The variant allele detection in non-FFPE was found to be comparable to that of FFPE tumor samples in matched samples. CONCLUSIONS: Non-FFPE was demonstrated to be a suitable material for DNA and RNA library preparations using a comprehensive NGS panel. This is the first study reporting library quality metrics according to the TSO500 analysis pipeline.


Subject(s)
Formaldehyde , Neoplasms , Humans , Paraffin Embedding , Tissue Fixation , Neoplasms/diagnosis , Neoplasms/genetics , DNA/genetics , High-Throughput Nucleotide Sequencing , RNA
2.
Ecol Evol ; 12(1): e8540, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35127043

ABSTRACT

The Cerrado, the largest Neotropical savanna, and the Brazilian Atlantic Forest form large ecotonal areas where savanna and forest habitats occupy adjacent patches with closely related species occurring side by side, providing opportunities for hybridization. Here, we investigated the evolutionary divergence between the savanna and forest ecotypes of the widely distributed tree Plathymenia reticulata (n = 233 individuals). Genetic structure analysis of P. reticulata was congruent with the recognition of two ecotypes, whose divergence captured the largest proportion of genetic variance in the data (F CT = 0.222 and F ST = 0.307). The ecotonal areas between the Cerrado and the Atlantic Forest constitute a hybrid zone in which a diversity of hybrid classes was observed, most of them corresponding to second-generation hybrids (F2) or backcrosses. Gene flow occurred mainly toward the forest ecotype. The genetic structure was congruent with isolation by environment, and environmental correlates of divergence were identified. The observed pattern of high genetic divergence between ecotypes may reflect an incipient speciation process in P. reticulata. The low genetic diversity of the P. reticulata forest ecotype indicate that it is threatened in areas with high habitat loss on Atlantic Forest. In addition, the high divergence from the savanna ecotype suggests it should be treated as a different unit of management. The high genetic diversity found in the ecotonal hybrid zone supports the view of ecotones as important areas for the origin and conservation of biodiversity in the Neotropics.

3.
Mol Ecol ; 29(2): 344-362, 2020 01.
Article in English | MEDLINE | ID: mdl-31834961

ABSTRACT

Environmental variation along the geographical space can shape populations by natural selection. In the context of global warming and changing precipitation regimes, it is crucial to understand the role of environmental heterogeneity in tropical trees adaptation, given their disproportional contribution to water and carbon biogeochemical cycles. Here, we investigated how heterogeneity in freshwater availability along tropical wetlands has influenced molecular variations of the black mangrove (Avicennia germinans). A total of 57 trees were sampled at seven sites differing markedly in precipitation regime and riverine freshwater inputs. Using 2,297 genome-wide single nucleotide polymorphic markers, we found signatures of natural selection by the association between variations in allele frequencies and environmental variables, including the precipitation of the warmest quarter and the annual precipitation. Additionally, we found candidate loci for selection based on statistical deviations from neutral expectations of interpopulation differentiation. Most candidate loci within transcribed sequences were functionally associated with central aspects of drought tolerance or plant response to drought. Moreover, our results suggest the occurrence of the rapid evolution of a population, probably in response to sudden and persistent limitations in plant access to soil water, following a road construction in 1974. Observations supporting rapid evolution included the reduction in tree size and changes in allele frequencies and in transcript expression associated with increased drought tolerance through the accumulation of osmoprotectants and antioxidants, biosynthesis of cuticles, protection against protein degradation, stomatal closure, photorespiration and photosynthesis. We describe a major role of spatial heterogeneity in freshwater availability in the specialization of this typically tropical tree.


Subject(s)
Acanthaceae/genetics , Acanthaceae/physiology , Droughts , Ecology , Fresh Water , Genome, Plant/genetics , RNA-Seq , Wetlands
4.
Sci Rep ; 9(1): 19936, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882752

ABSTRACT

Local adaptation is often a product of environmental variations in geographical space and has implications for biodiversity conservation. We investigated the role of latitudinal heterogeneity in climate on the organization of genetic and phenotypic variation in the dominant coastal tree Avicennia schaueriana. In a common garden experiment, samples from an equatorial region, with pronounced seasonality in precipitation, accumulated less biomass, and showed lower stomatal conductance and transpiration, narrower xylem vessels, smaller leaves and higher reflectance of long wavelengths by the stem epidermis than samples from a subtropical region, with seasonality in temperature and no dry season. Transcriptomic differences identified between trees sampled under field conditions at equatorial and subtropical sites, were enriched in functional categories such as responses to temperature, solar radiation, water deficit, photosynthesis and cell wall biosynthesis. Remarkably, the diversity based on genome-wide SNPs revealed a north-south genetic structure and signatures of selection were identified for loci associated with photosynthesis, anthocyanin accumulation and the responses to osmotic and hypoxia stresses. Our results suggest the existence of divergence in key resource-use characteristics, likely driven by seasonality in water deficit and solar radiation. These findings provide a basis for conservation plans and for predicting coastal plants responses to climate change.


Subject(s)
Adaptation, Biological/genetics , Adaptation, Physiological/genetics , Trees/genetics , Trees/physiology , Acclimatization , Adaptation, Physiological/physiology , Biodiversity , Climate Change , Ecosystem , Fresh Water , Photosynthesis , Plant Leaves/physiology , Plant Stomata/physiology , Plant Transpiration/physiology , Seasons , Solar Energy , Temperature , Water , Xylem/physiology
5.
Appl Plant Sci ; 4(9)2016 Sep.
Article in English | MEDLINE | ID: mdl-27672519

ABSTRACT

PREMISE OF THE STUDY: Twenty-seven nuclear microsatellite markers were developed for the mangrove fern, Acrostichum aureum (Pteridaceae), to investigate the genetic structure and demographic history of the only pantropical mangrove plant. METHODS AND RESULTS: Fifty-six A. aureum individuals from three populations were sampled and genotyped to characterize the 27 loci. The number of alleles and expected heterozygosity ranged from one to 15 and 0.000 to 0.893, respectively. Across the 26 polymorphic loci, the Malaysian population showed much higher levels of polymorphism compared to the other two populations in Guam and Brazil. Cross-amplification tests in the other two species from the genus determined that seven and six loci were amplifiable in A. danaeifolium and A. speciosum, respectively. CONCLUSIONS: The 26 polymorphic microsatellite markers will be useful for future studies investigating the genetic structure and demographic history of of A. aureum, which has the widest distributional range of all mangrove plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...