Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Publication year range
2.
Interv Cardiol ; 17: e10, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35923767

ABSTRACT

Background: Ineffective myocardial perfusion despite angiographic success after angioplasty occurs frequently and is associated with an increased risk of mortality. Hence, this study determined whether myocardial perfusion measured by myocardial blush grade (MBG) identifies ST-elevation MI (STEMI) patients at high risk for poor outcomes after successful angioplasty. Methods: The search employed strategies designed for research databases. An article was eligible if it included adults who underwent coronary angioplasty for STEMI, post-angioplasty MBG was assessed, and mortality or major adverse cardiovascular events (MACE) were determined. Risk for bias was assessed using the Quality In Prognosis Studies tool and forest plots in a Mantel-Haenszel fixed effects model were created using RevMan5.4. Results/discussion: Eight observational studies with an overall low risk of bias were included, involving 8,044 patients. MBG 0/1 with no to poor myocardial perfusion had a negative prognostic value for mortality (OR 2.68; 95% CI [2.22-3.23]) and MACE (OR 1.20; 95% CI [1.01-1.41]). Furthermore, MBG 2 with moderate myocardial perfusion and MBG 3 with normal myocardial perfusion were associated with increased survival with a logHR of 0.47 (95% CI [0.43-0.52]) and 0.20 percutaneous coronary intervention (95% CI [0.18-0.23]). These results imply MBG is a useful prognostic marker for STEMI patients. Conclusion: MBG 0/1 after primary angioplasty is a strong negative prognostic marker for long-term all-cause mortality and MACE among STEMI patients, and a post-primary angioplasty MBG of 2 or 3 is a robust prognostic marker for long-term survival.

3.
CASE (Phila) ; 1(1): 23-27, 2017 Feb.
Article in English | MEDLINE | ID: mdl-30062236
4.
Chemphyschem ; 16(11): 2299-303, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26031212

ABSTRACT

Propagating reaction fronts allow the formation of materials in self-sustained, steep concentration gradients, which would otherwise rapidly decay. These conditions can result in macroscopic, noncrystallographic structures, such as tubes with large aspect ratios. For hollow silica/Zn(OH)2 tubes, we report the inclusion of diverse mesoscopic building blocks ranging from polymer beads to biological cells. For agarose beads, we observe spontaneous alignment along vertical tracks; the nearly periodic spacing of the beads along these tracks follows a log-normal distribution. We interpret this patterning in terms of hydrodynamic recruitment and discuss similarities to the adhesion dynamics of leukocytes in blood vessels. For diatoms and other cells, we observe novel surface textures, and yeast tagged with a green fluorescent protein shows strong fluorescence activity after trapping. The inclusion of these guest units should improve the possibilities for the application of these tubes in microfluidics and biotechnology.


Subject(s)
Hydroxides/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry , Zinc Compounds/chemistry , Cell Adhesion , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Hydrodynamics , Leukocytes/cytology , Leukocytes/metabolism , Microfluidics , Microscopy, Confocal , Yeasts/metabolism
5.
Langmuir ; 30(30): 9123-9, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25014675

ABSTRACT

Many inorganic precipitation reactions self-organize macroscopic tubes known as chemical gardens. We study the nonequilibrium formation of these structures by injecting aqueous sodium sulfide solution into a reservoir of iron(II) chloride solution. Our experiments reveal a distinct, concentration-dependent transition from convective plumes of reaction-induced, colloidal particles to mechanically connected, hollow tubes. The transition concentration (0.1 mol/L) is widely independent of the injection rate and causes a discontinuous change from the radius of the plume stalk to the radius of the tube. In addition, tubes have lower growth speeds than plumes. At the transition concentration, one observes the initial formation of a plume followed by the growth of a mechanically weak tube around a jet of upward-moving precipitation particles. We find that the plumes' morphology and geometric scaling are similar to that of laminar starting plumes in nonreactive systems. The characterization of dried tubes by X-ray diffraction indicates the presence of greigite and lepidocrocite.

SELECTION OF CITATIONS
SEARCH DETAIL