Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 225, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383609

ABSTRACT

Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families.


Subject(s)
Ecosystem , Grassland , Plants , Biodiversity , Peru , Climate , Altitude , Fires
2.
Proc Natl Acad Sci U S A ; 120(3): e2214462120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36623189

ABSTRACT

Logged and structurally degraded tropical forests are fast becoming one of the most prevalent land-use types throughout the tropics and are routinely assumed to be a net carbon sink because they experience rapid rates of tree regrowth. Yet this assumption is based on forest biomass inventories that record carbon stock recovery but fail to account for the simultaneous losses of carbon from soil and necromass. Here, we used forest plots and an eddy covariance tower to quantify and partition net ecosystem CO2 exchange in Malaysian Borneo, a region that is a hot spot for deforestation and forest degradation. Our data represent the complete carbon budget for tropical forests measured throughout a logging event and subsequent recovery and found that they constitute a substantial and persistent net carbon source. Consistent with existing literature, our study showed a significantly greater woody biomass gain across moderately and heavily logged forests compared with unlogged forests, but this was counteracted by much larger carbon losses from soil organic matter and deadwood in logged forests. We estimate an average carbon source of 1.75 ± 0.94 Mg C ha-1 yr-1 within moderately logged plots and 5.23 ± 1.23 Mg C ha-1 yr-1 in unsustainably logged and severely degraded plots, with emissions continuing at these rates for at least one-decade post-logging. Our data directly contradict the default assumption that recovering logged and degraded tropical forests are net carbon sinks, implying the amount of carbon being sequestered across the world's tropical forests may be considerably lower than currently estimated.


Subject(s)
Carbon , Ecosystem , Tropical Climate , Biomass , Atmosphere , Soil
3.
Sci Rep ; 10(1): 2654, 2020 02 14.
Article in English | MEDLINE | ID: mdl-32060345

ABSTRACT

Ultraviolet (UV) radiation is a small fraction of the solar spectrum, which acts as a key environmental modulator of plant function affecting metabolic regulation and growth. Plant species endemic to the Andes are well adapted to the harsh features of high-altitude climate, including high UV radiation. Maca (Lepidium meyenii Walpers) is a member of Brassicaceae family native to the central Andes of Peru, which grows between 3500 and 4500 m of altitude, where only highland grasses and few hardy bushes can survive. Even though maca has been the focus of recent researches, mainly due to its nutraceutical properties, knowledge regarding its adaptation mechanisms to these particular natural environmental conditions is scarce. In this study, we manipulated solar UV radiation by using UV-transmitting (Control) or blocking (UV-block) filters under field conditions (4138 m above the sea level) in order to understand the impact of UV on morphological and physiological parameters of maca crops over a complete growing season. Compared to the UV-blocking filter, under control condition a significant increase of hypocotyl weight was observed during the vegetative phase together with a marked leaf turnover. Although parameters conferring photosynthetic performance were not altered by UV, carbohydrate allocation between above and underground organs was affected. Control condition did not influence the content of secondary metabolites such as glucosinolates and phenolic compounds in hypocotyls, while some differences were observed in the rosettes. These differences were mainly related to leaf turnover and the protection of new young leaves in control plants. Altogether, the data suggest that maca plants respond to strong UV radiation at high altitudes by a coordinated remobilization and relocation of metabolites between source and sink organs via a possible UV signaling pathway.


Subject(s)
Altitude , Ecosystem , Lepidium/physiology , Lepidium/radiation effects , Ultraviolet Rays , Chlorophyll A/metabolism , Fluorescence , Gases/metabolism , Lepidium/growth & development , Photosynthesis/radiation effects , Pigments, Biological/metabolism , Plant Leaves/metabolism , Plant Leaves/radiation effects , Secondary Metabolism , Solubility , Starch/analysis , Sugars/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...