Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Proteomics ; 18(2): 277-293, 2019 02.
Article in English | MEDLINE | ID: mdl-30404858

ABSTRACT

Integrin-mediated laminin adhesions mediate epithelial cell anchorage to basement membranes and are critical regulators of epithelial cell polarity. Integrins assemble large multiprotein complexes that link to the cytoskeleton and convey signals into the cells. Comprehensive proteomic analyses of actin network-linked focal adhesions (FA) have been performed, but the molecular composition of intermediate filament-linked hemidesmosomes (HD) remains incompletely characterized. Here we have used proximity-dependent biotin identification (BioID) technology to label and characterize the interactome of epithelia-specific ß4-integrin that, as α6ß4-heterodimer, forms the core of HDs. The analysis identified ∼150 proteins that were specifically labeled by BirA-tagged integrin-ß4. In addition to known HDs proteins, the interactome revealed proteins that may indirectly link integrin-ß4 to actin-connected protein complexes, such as FAs and dystrophin/dystroglycan complexes. The specificity of the screening approach was validated by confirming the HD localization of two candidate ß4-interacting proteins, utrophin (UTRN) and ELKS/Rab6-interacting/CAST family member 1 (ERC1). Interestingly, although establishment of functional HDs depends on the formation of α6ß4-heterodimers, the assembly of ß4-interactome was not strictly dependent on α6-integrin expression. Our survey to the HD interactome sets a precedent for future studies and provides novel insight into the mechanisms of HD assembly and function of the ß4-integrin.


Subject(s)
Integrin beta4/chemistry , Integrin beta4/metabolism , Proteomics/methods , Animals , Biotinylation , Chromatography, Liquid , Dogs , Madin Darby Canine Kidney Cells , Protein Interaction Maps , Protein Multimerization , Tandem Mass Spectrometry
2.
Cell ; 174(3): 576-589.e18, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30033361

ABSTRACT

Genome-wide association studies (GWAS) have identified rs11672691 at 19q13 associated with aggressive prostate cancer (PCa). Here, we independently confirmed the finding in a cohort of 2,738 PCa patients and discovered the biological mechanism underlying this association. We found an association of the aggressive PCa-associated allele G of rs11672691 with elevated transcript levels of two biologically plausible candidate genes, PCAT19 and CEACAM21, implicated in PCa cell growth and tumor progression. Mechanistically, rs11672691 resides in an enhancer element and alters the binding site of HOXA2, a novel oncogenic transcription factor with prognostic potential in PCa. Remarkably, CRISPR/Cas9-mediated single-nucleotide editing showed the direct effect of rs11672691 on PCAT19 and CEACAM21 expression and PCa cellular aggressive phenotype. Clinical data demonstrated synergistic effects of rs11672691 genotype and PCAT19/CEACAM21 gene expression on PCa prognosis. These results provide a plausible mechanism for rs11672691 associated with aggressive PCa and thus lay the ground work for translating this finding to the clinic.


Subject(s)
Prostatic Neoplasms/genetics , RNA, Long Noncoding/genetics , RNA, Untranslated/genetics , Adult , Alleles , Cell Line, Tumor , Chromosomes, Human, Pair 19/genetics , Cohort Studies , Gene Expression Regulation, Neoplastic/genetics , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Genotype , Homeodomain Proteins , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...