ABSTRACT
Mannheimia haemolytica causes respiratory disease in cattle. Amyloid proteins are a major component of biofilms; they aid in adhesion and confer resistance against several environmental insults. The amyloid protein curli is highly resistant to protease digestion and physical and chemical denaturation and binds Congo red (CR) dye. The purpose of this study was to characterize an approximately 50-kDa CR-binding amyloid-like protein (ALP) expressed by M. haemolytica. This protein resisted boiling and formic acid digestion and was recognized by a polyclonal anti-Escherichia coli curli serum, suggesting its relationship with amyloid proteins. Immunolabeling and transmission electron microscopy showed that antibodies bound long, thin fibers attached to the bacterial surface. Mass spectrometry analysis indicated that these fibers are M. haemolytica OmpP2-like proteins. The purified protein formed filaments in vitro, and antiserum against it reacted positively with biofilms. An in silico analysis of its amino acid sequence indicated it has auto-aggregation properties and eight amyloid peptides. Rabbit polyclonal antibodies generated against this ALP diminished the adhesion of ATCC 31612 and BA1 M. haemolytica strains to A549 human epithelial cells, indicating its participation in cell adhesion. ALP expressed by M. haemolytica may be important in its pathogenicity and ability to form biofilms.