Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 291(2): 338-357, 2024 01.
Article in English | MEDLINE | ID: mdl-37846201

ABSTRACT

StarD7 is a member of the START protein family required for phosphatidylcholine delivery to the mitochondria, thus key to maintain mitochondrial structure. Its deficiency has been associated with an impairment of cellular processes, such as proliferation and migration, and it has also been reported that it is needed in myogenic differentiation. Here, we show that StarD7 deficiency in C2C12 muscle cells results in the accumulation of abnormal mitochondria, a reduced number of mitochondria per cell area and increased glycolysis. In addition, StarD7-deficient cells undergo an increase in mitochondria-ER contact sites, reduced connexin 43 expression, and disturbances in lipid handling, evidenced by lipid droplet accumulation and decreased levels in phosphatidylserine synthase 1 and 2 expression. Interestingly, StarD7-deficient cells showed alterations in mitophagy markers. We observed accumulation of LC3B-II and BNIP3 proteins in mitochondria-enriched fractions and accumulation of autophagolysosomal and lysosomal vesicles in StarD7-deficient cells. Furthermore, live-cell imaging experiments of StarD7 knockdown cells expressing mitochondria-targeted mKeima indicated an enhanced mitochondria delivery into lysosomes. Importantly, StarD7 reconstitution in StarD7-deficient cells restores LC3B-II expression in mitochondria-enriched fractions at similar levels to those observed in control cells. Collectively, these findings suggest that StarD7-deficient C2C12 myoblasts are associated with altered cristae structure, disturbances in neutral lipid accumulation, glucose metabolism, and increased mitophagy flux. The alterations mentioned above allow for the maintenance of mitochondrial function.


Subject(s)
Carrier Proteins , Mitophagy , Carrier Proteins/metabolism , Glycolysis/genetics , Lipids , Mitophagy/genetics , Myoblasts/metabolism , Animals , Mice
2.
PLoS One ; 17(12): e0279912, 2022.
Article in English | MEDLINE | ID: mdl-36584213

ABSTRACT

StarD7 belongs to START protein family involved in lipid traffic, metabolism, and signaling events. Its precursor, StarD7.I which is important for mitochondrial homeostasis, is processed to the StarD7.II isoform that lacks the mitochondrial targeting sequence and is mainly released to the cytosol. StarD7 knockdown interferes with cell migration by an unknown mechanism. Here, we demonstrate that StarD7 silencing decreased connexin 43 (Cx43), integrin ß1, and p-ERK1/2 expression in the non-tumoral migratory HTR-8/SVneo cells. StarD7-deficient cells exhibited Golgi disruption and reduced competence to reorient the microtubule-organizing center. The migratory capacity of StarD7-silenced cells was reestablished when Cx43 level was resettled, while p-ERK1/2 expression remained low. Importantly, ectopic expression of the StarD7.II isoform not only restored cell migration but also ERK1/2, Cx43, and integrin ß1 expression. Thus, StarD7 is implicated in cell migration through an ERK1/2/Cx43 dependent mechanism but independent of the StarD7.I function in the mitochondria.


Subject(s)
Carrier Proteins , Connexin 43 , Carrier Proteins/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Integrin beta1/genetics , Integrin beta1/metabolism , MAP Kinase Signaling System , Cell Movement/genetics , Protein Isoforms/metabolism
3.
Sci Rep ; 12(1): 16035, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36163445

ABSTRACT

The development of new treatments capable of controlling infections and pain related to burns continues to be a challenge. Antimicrobials are necessary tools, but these can be cytotoxic for regenerating cells. In this study, antibiotic-anesthetic (AA) smart systems obtained by ionic complexation of polyelectrolytes with ciprofloxacin and lidocaine were obtained as films and hydrogels. Ionic complexation with sodium alginate and hyaluronate decreased cytotoxicity of ciprofloxacin above 70% in a primary culture of isolated fibroblasts (p < 0.05). In addition, the relative levels of the proteins involved in cell migration, integrin ß1 and p-FAK, increased above 1.5 times (p < 0.05) with no significant differences in cell mobility. Evaluation of the systems in a deep second-degree burn model revealed that reepithelization rate was AA-films = AA-hydrogels > control films > no treated > reference cream (silver sulfadiazine cream). In addition, appendage conservation and complete dermis organization were achieved in AA-films and AA-hydrogels. Encouragingly, both the films and the hydrogels showed a significantly superior performance compared to the reference treatment. This work highlights the great potential of this smart system as an attractive dressing for burns, which surpasses currently available treatments.


Subject(s)
Burns , Silver Sulfadiazine , Alginates/pharmacology , Anti-Bacterial Agents/pharmacology , Burns/drug therapy , Ciprofloxacin/pharmacology , Fibroblasts , Humans , Hydrogels/pharmacology , Integrin beta1 , Ions , Lidocaine , Polyelectrolytes , Wound Healing
4.
FEBS Lett ; 596(13): 1700-1719, 2022 07.
Article in English | MEDLINE | ID: mdl-35490377

ABSTRACT

Trophoblast cell differentiation is of paramount importance for successful pregnancy. Krüppel-like factor 6 (KLF6), a transcription factor with diverse roles in cell physiology and tumor biology, is required for trophoblast differentiation through the syncytial pathway. Herein, we demonstrate that extravillous trophoblast (EVT) cell migration and mesenchymal phenotype are increased upon KLF6 downregulation or the expression of a deletion mutant lacking its transcriptional regulatory domain (KΔac). Raman spectroscopy revealed molecular modifications compatible with increased differentiation in cells stably expressing the KΔac mutant. Moreover, abnormally invasive placenta showed lower KLF6 immunostaining compared with the normal placenta. Thus, impaired KLF6 expression or function stimulates EVT migration and differentiation in vitro and may contribute to the physiopathology of the abnormally invasive placenta.


Subject(s)
Placenta , Trophoblasts , Cell Differentiation/genetics , Cell Movement/genetics , Female , Gene Expression Regulation , Humans , Kruppel-Like Factor 6/genetics , Kruppel-Like Factor 6/metabolism , Placenta/metabolism , Pregnancy , Trophoblasts/metabolism
5.
Placenta ; 117: 139-149, 2022 01.
Article in English | MEDLINE | ID: mdl-34894601

ABSTRACT

INTRODUCTION: Villous cytotrophoblast (vCTB) cells fuse to generate and maintain the syncytiotrophoblast layer required for placental development and function. Krüppel-like factor 6 (KLF6) is a ubiquitous transcription factor with an N-terminal acidic transactivation domain and a C-terminal zinc finger DNA-binding domain. KLF6 is highly expressed in placenta, and it is required for proper placental development. We have demonstrated that KLF6 is necessary for cell fusion in human primary vCTBs, and in the BeWo cell line. MATERIALS AND METHODS: Full length KLF6 or a mutant lacking its N-terminal domain were expressed in BeWo cells or in primary vCTB cells isolated from human term placentas. Cell fusion, gene and protein expression, and cell proliferation were analyzed. Moreover, Raman spectroscopy and atomic force microscopy (AFM) were used to identify biochemical, topography, and elasticity cellular modifications. RESULTS: The increase in KLF6, but not the expression of its deleted mutant, is sufficient to trigger cell fusion and to raise the expression of ß-hCG, syncytin-1, the chaperone protein 78 regulated by glucose (GRP78), the ATP Binding Cassette Subfamily G Member 2 (ABCG2), and Galectin-1 (Gal-1), all molecules involved in vCTB differentiation. Raman and AFM analysis revealed that KLF6 reduces NADH level and increases cell Young's modulus. KLF6-induced differentiation correlates with p21 upregulation and decreased cell proliferation. Remarkable, p21 silencing reduces cell fusion triggered by KLF6 and the KLF6 mutant impairs syncytialization and decreases syncytin-1 and ß-hCG expression. DISCUSSION: KLF6 induces syncytialization through a mechanism that involves its regulatory transcriptional domain in a p21-dependent manner.


Subject(s)
Cell Fusion , Kruppel-Like Factor 6/metabolism , Trophoblasts/metabolism , Cell Line, Tumor , Humans , Kruppel-Like Factor 6/chemistry , Protein Domains
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1866(12): 159029, 2021 12.
Article in English | MEDLINE | ID: mdl-34416390

ABSTRACT

Mitochondria are dynamic organelles crucial for cell function and survival implicated in oxidative energy production whose central functions are tightly controlled by lipids. StarD7 is a lipid transport protein involved in the phosphatidylcholine (PC) delivery to mitochondria. Previous studies have shown that StarD7 knockdown induces alterations in mitochondria and endoplasmic reticulum (ER) with a reduction in PC content, however whether StarD7 modulates mitochondrial dynamics remains unexplored. Here, we generated HTR-8/SVneo stable cells expressing the precursor StarD7.I and the mature processed StarD7.II isoforms. We demonstrated that StarD7.I overexpression altered mitochondrial morphology increasing its fragmentation, whereas no changes were observed in StarD7.II-overexpressing cells compared to the control (Ct) stable cells. StarD7.I (D7.I) stable cells were able to transport higher fluorescent PC analog to mitochondria than Ct cells, yield mitochondrial fusions, maintained the membrane potential, and produced lower levels of reactive oxygen species (ROS). Additionally, the expression of Dynamin Related Protein 1 (Drp1) and Mitofusin (Mfn2) proteins were increased, whereas the amount of Mitofusin 1 (Mfn1) decreased. Moreover, transfections with plasmids encoding Drp1-K38A, Drp1-S637D or Drp1-S637A mutants indicated that mitochondrial fragmentation in D7.I cells occurs in a fission-dependent manner via Drp1. In contrast, StarD7 silencing decreased Mfn1 and Mfn2 fusion proteins without modification of Drp1 protein level. These cells increased ROS levels and presented donut-shape mitochondria, indicative of metabolic stress. Altogether our findings provide novel evidence indicating that alterations in StarD7.I expression produce significant changes in mitochondrial morphology and dynamics.


Subject(s)
Carrier Proteins/genetics , Dynamins/genetics , GTP Phosphohydrolases/genetics , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Proteins/genetics , Gene Expression Regulation , Humans , Lipid Metabolism/genetics , Lipids/genetics , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Phosphatidylcholines/metabolism , Reactive Oxygen Species/metabolism
7.
Mol Biol Rep ; 45(6): 2593-2600, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30315445

ABSTRACT

StarD7 is a lipid binding protein involved in the delivery of phosphatidylcholine to the mitochondria whose promoter is activated by Wnt/ß-catenin signaling. Although the majority of glucose enters glycolysis, ~ 2-5% of it can be metabolized via the hexosamine biosynthetic pathway (HBP). Considering that HBP has been implicated in the regulation of ß-catenin we explored if changes in glucose levels modulate StarD7 expression by the HBP in trophoblast cells. We found an increase in StarD7 as well as in ß-catenin expression following high-glucose (25 mM) treatment in JEG-3 cells; these effects were abolished in the presence of HBP inhibitors. Moreover, since HBP is able to promote unfolded protein response (UPR) the protein levels of GRP78, Ire1α, calnexin, p-eIF2α and total eIF2α as well as XBP1 mRNA was measured. Our results indicate that a diminution in glucose concentration leads to a decrease in StarD7 expression and an increase in the UPR markers: GRP78 and Ire1α. Conversely, an increase in glucose is associated to high StarD7 levels and low GRP78 expression, phospho-eIF2α and XBP1 splicing, although Ire1α remains high when cells are restored to high glucose. Taken together these findings indicate that glucose modulates StarD7 and ß-catenin expression through the HBP associated to UPR, suggesting the existence of a link between UPR and HBP in trophoblast cells. This is the first study reporting the effects of glucose on StarD7 in trophoblast cells. These data highlight the importance to explore the role of StarD7 in placenta disorders related to nutrient availability.


Subject(s)
Carrier Proteins/metabolism , Hexosamines/metabolism , Alternative Splicing/genetics , Biosynthetic Pathways , Carrier Proteins/genetics , Cell Line, Tumor , Endoplasmic Reticulum Chaperone BiP , Endoribonucleases/metabolism , Gene Expression Regulation/physiology , Glucose/metabolism , Heat-Shock Proteins/metabolism , Humans , Promoter Regions, Genetic/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/genetics , Unfolded Protein Response , Wnt Signaling Pathway , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...