Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Decis Support Syst ; 161: 113630, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34219851

ABSTRACT

The COVID-19 pandemic has become a crucial public health problem in the world that disrupted the lives of millions in many countries including the United States. In this study, we present a decision analytic approach which is an efficient tool to assess the effectiveness of early social distancing measures in communities with different population characteristics. First, we empirically estimate the reproduction numbers for two different states. Then, we develop an age-structured compartmental simulation model for the disease spread to demonstrate the variation in the observed outbreak. Finally, we analyze the computational results and show that early trigger social distancing strategies result in smaller death tolls; however, there are relatively larger second waves. Conversely, late trigger social distancing strategies result in higher initial death tolls but relatively smaller second waves. This study shows that decision analytic tools can help policy makers simulate different social distancing scenarios at the early stages of a global outbreak. Policy makers should expect multiple waves of cases as a result of the social distancing policies implemented when there are no vaccines available for mass immunization and appropriate antiviral treatments.

2.
J R Soc Interface ; 16(157): 20190141, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31455165

ABSTRACT

Cutaneous leishmaniasis (CL) is a neglected tropical disease transmitted by species of Phlebotominae sand flies. CL is responsible for more than 1000 reported cases per year in Ecuador. Vector collection studies in Ecuador suggest that there is a strong association between the ecological diversity of an ecosystem, the presence of potential alternative or reservoir hosts and the abundance of sand fly species. Data collected from a coastal community in Ecuador showed that Leishmania parasites may be circulating in diverse hosts, including mammalian and potentially avian species, and these hosts may serve as potential hosts for the parasite. There has been limited reporting of CL cases in Ecuador because the disease is non-fatal and its surveillance system is passive. Hence, the actual incidence of CL is unknown. In this study, an epidemic model was developed and analysed to understand the complexity of CL transmission dynamics with potential non-human hosts in the coastal ecosystem and to estimate critical epidemiological quantities for Ecuador. The model is fitted to the 2010 CL outbreak in the town of Valle Hermoso in the Santo Domingo de los Tsachilas province of Ecuador and parameters such as CL transmission rates in different types of hosts (primary and alternative), and levels of case reporting in the town are estimated. The results suggest that the current surveillance in this region fails to capture 38% (with 95% CI (29%, 47%)) of the actual number of cases under the assumption that alternative hosts are dead-end hosts and that the mean CL reproduction number in the town is 3.9. This means that on the average 3.9 new human CL cases were generated by a single infectious human in the town during the initial period of the 2010 outbreak. Moreover, major outbreaks of CL in Ecuador in coastal settings are unavoidable until reporting through the surveillance system is improved and alternative hosts are managed properly. The estimated infection transmission probabilities from alternative hosts to sand flies, and sand flies to alternative hosts are 27% and 32%, respectively. The analysis highlights that vector control and alternative host management are two effective programmes for Ecuador but need to be implemented concurrently to avoid future major outbreaks.


Subject(s)
Ecosystem , Insect Vectors/physiology , Leishmaniasis, Cutaneous/epidemiology , Models, Biological , Psychodidae/physiology , Animals , Birds/parasitology , Ecuador/epidemiology , Humans , Leishmania/isolation & purification , Psychodidae/parasitology , Zoonoses
3.
Math Biosci Eng ; 13(5): 1043-1058, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27775396

ABSTRACT

Diabetes mellitus is a disease characterized by a range of metabolic complications involving an individual's blood glucose levels, and its main regulator, insulin. These complications can vary largely from person to person depending on their current biophysical state. Biomedical research day-by-day makes strides to impact the lives of patients of a variety of diseases, including diabetes. One large stride that is being made is the generation of techniques to assist physicians to ``personalize medicine''. From available physiological data, biological understanding of the system, and dimensional analysis, a differential equation-based mathematical model was built in a sequential matter, to be able to elucidate clearly how each parameter correlates to the patient's current physiological state. We developed a simple mathematical model that accurately simulates the dynamics between glucose, insulin, and pancreatic $\beta$-cells throughout disease progression with constraints to maintain biological relevance. The current framework is clearly capable of tracking the patient's current progress through the disease, dependent on factors such as latent insulin resistance or an attrite $\beta$-cell population. Further interests would be to develop tools that allow the direct and feasible testing of how effective a given plan of treatment would be at returning the patient to a desirable biophysical state.


Subject(s)
Diabetes Mellitus/pathology , Glucose/toxicity , Models, Theoretical , Blood Glucose/metabolism , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism
4.
BMC Infect Dis ; 11: 207, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21806800

ABSTRACT

BACKGROUND: Influenza viruses are a major cause of morbidity and mortality worldwide. Vaccination remains a powerful tool for preventing or mitigating influenza outbreaks. Yet, vaccine supplies and daily administration capacities are limited, even in developed countries. Understanding how such constraints can alter the mitigating effects of vaccination is a crucial part of influenza preparedness plans. Mathematical models provide tools for government and medical officials to assess the impact of different vaccination strategies and plan accordingly. However, many existing models of vaccination employ several questionable assumptions, including a rate of vaccination proportional to the population at each point in time. METHODS: We present a SIR-like model that explicitly takes into account vaccine supply and the number of vaccines administered per day and places data-informed limits on these parameters. We refer to this as the non-proportional model of vaccination and compare it to the proportional scheme typically found in the literature. RESULTS: The proportional and non-proportional models behave similarly for a few different vaccination scenarios. However, there are parameter regimes involving the vaccination campaign duration and daily supply limit for which the non-proportional model predicts smaller epidemics that peak later, but may last longer, than those of the proportional model. We also use the non-proportional model to predict the mitigating effects of variably timed vaccination campaigns for different levels of vaccination coverage, using specific constraints on daily administration capacity. CONCLUSIONS: The non-proportional model of vaccination is a theoretical improvement that provides more accurate predictions of the mitigating effects of vaccination on influenza outbreaks than the proportional model. In addition, parameters such as vaccine supply and daily administration limit can be easily adjusted to simulate conditions in developed and developing nations with a wide variety of financial and medical resources. Finally, the model can be used by government and medical officials to create customized pandemic preparedness plans based on the supply and administration constraints of specific communities.


Subject(s)
Civil Defense/methods , Disease Outbreaks , Health Services Administration , Influenza Vaccines/administration & dosage , Influenza Vaccines/supply & distribution , Influenza, Human/prevention & control , Vaccination/methods , Drug Storage , Humans , Models, Theoretical
5.
Math Biosci Eng ; 8(1): 21-48, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21361398

ABSTRACT

Influenza outbreaks have been of relatively limited historical interest in Mexico. The 2009 influenza pandemic not only changed Mexico's health priorities but also brought to the forefront some of the strengths and weaknesses of Mexico's epidemiological surveillance and public health system. A year later, Mexico's data show an epidemic pattern characterized by three "waves''. The reasons this three-wave patterns are theoretically investigated via models that incorporate Mexico's general trends of land transportation, public health measures, and the regular opening and closing of schools during 2009. The role of vaccination is also studied taking into account delays in access and limitations in the total and daily numbers of vaccines available. The research in this article supports the view that the three epidemic "waves" are the result of the synergistic interactions of three factors: regional movement patterns of Mexicans, the impact and effectiveness of dramatic social distancing measures imposed during the first outbreak, and the summer release of school children followed by their subsequent return to classes in the fall. The three "waves" cannot be explained by the transportation patterns alone but only through the combination of transport patterns and changes in contact rates due to the use of explicit or scheduled social distancing measures. The research identifies possible vaccination schemes that account for the school calendar and whose effectiveness are enhanced by social distancing measures. The limited impact of the late arrival of the vaccine is also analyzed.


Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/epidemiology , Influenza, Human/immunology , Models, Immunological , Pandemics , Computer Simulation , Humans , Influenza, Human/transmission , Influenza, Human/virology , Mexico/epidemiology , Transportation , Vaccination/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...