Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 46(8): 8794-8806, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39194737

ABSTRACT

Timber trees are targets of herbivorous attacks. The identification of genes associated with pest resistance can be accomplished through differential expression analysis using transcriptomes. We reported the de novo assembly of cedar (Cedrela odorata L.) transcriptome and the differential expression of genes involved in herbivore resistance. The assembly and annotation of the transcriptome were obtained using RNAseq from healthy cedar plants and those infested with Chrysobothris yucatanensis. A total of 325.6 million reads were obtained, and 127,031 (97.47%) sequences were successfully assembled. A total of 220 herbivory-related genes were detected, of which 170 genes were annotated using GO terms, and 161 genes with 245 functions were identified-165, 75, and 5 were molecular functions, biological processes, and cellular components, respectively. To protect against herbivorous infestation, trees produce toxins and volatile compounds which are modulated by signaling pathways and gene expression related to molecular functions and biological processes. The limited number of genes identified as cellular components suggests that there are minimal alterations in cellular structure in response to borer attack. The chitin recognition protein, jasmonate ZIM-domain (JAZ) motifs, and response regulator receiver domain were found to be overexpressed, whereas the terpene synthase, cytochrome P450, and protein kinase domain gene families were underexpressed. This is the first report of a cedar transcriptome focusing on genes that are overexpressed in healthy plants and underexpressed in infested plants. This method may be a viable option for identifying genes associated with herbivore resistance.

2.
Plants (Basel) ; 12(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068566

ABSTRACT

Garlic (Allium sativum L.) is one of the 30 crops that are essential for world food; therefore, its conservation should be considered a priority. There are two main plant conservation strategies: in situ and ex situ conservation. Both strategies are important; nevertheless, ex situ field conservation is affected by biotic and abiotic factors. A complementary strategy to preserve garlic germplasm in the medium term is through in vitro culture by minimal growth. The aim of this study was to evaluate the in vitro conservation of three Mexican garlic varieties by minimal growth. Garlic plants obtained from in vitro garlic bulbs were preserved in six culture media at 25, 18, and 5 °C. A randomized design was used and an analysis of the variance of the survival, contamination, and shoot height of the explants was performed at 30, 60, 90, 180, 270, and 365 days of culture. The results showed that the in vitro conservation of Pebeco, Tacátzcuaro Especial, and Huerteño garlic varieties was optimally obtained for one year at 5 °C in a basal Murashige and Skoog (MS) culture medium with 68.46 g L-1 sucrose and 36.43 g L-1 sorbitol. Thus, the achieved protocol can be adapted to other varieties of garlic for medium-term storage in germplasm banks.

3.
Methods Mol Biol ; 1815: 215-226, 2018.
Article in English | MEDLINE | ID: mdl-29981124

ABSTRACT

Most cultivated bananas (Musa spp.) are polyploids, and their fruits are seedless and propagated exclusively vegetatively; however, they can also be cloned by micropropagation techniques, viz., direct organogenesis (DO) or somatic embryogenesis (SE). Banana indirect SE (ISE), with an embryogenic callus phase, is possible using young male or female flowers as direct explant depending on the genotype or shoot tips (scalps). For the False Horn Plantain, cv. Curraré (AAB, plantain subgroup), which has a degenerating male bud, female flowers are used to regenerate plants through ISE. Here, a protocol for increasing the number of initial explant material from a single mother plant and its embryogenic response is described. For those purposes, hands with young female buds are in vitro proliferated in the presence of 1 µM indole-3-acetic acid and 2.5 µM thidiazuron. Friable embryogenic cultures, here called ISE-2, obtained from the new proliferative secondary female bud clusters are initiated on medium containing auxins. Embryogenic suspensions are then established from the ISE-2 cultures. Regeneration of plants is achieved from embryogenic suspensions after plating on semisolid medium free of plant growth regulators; greenhouse acclimatized plantlets are ready for banana farming. This study demonstrates that proliferative female buds are a proper choice for ISE.


Subject(s)
Musa/cytology , Musa/embryology , Plant Somatic Embryogenesis Techniques/methods , Cell Proliferation , Culture Media/chemistry , Disinfection , Germination , Plant Roots/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL