Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002056

ABSTRACT

Autism spectrum disorder (ASD) is a psychiatric condition characterized by reduced social interaction, anxiety, and stereotypic behaviors related to neuroinflammation and microglia activation. We demonstrated that maternal exposure to Western diet (cafeteria diet or CAF) induced microglia activation, systemic proinflammatory profile, and ASD-like behavior in the offspring. Here, we aimed to identify the effect of alternate day fasting (ADF) as a non-pharmacologic strategy to modulate neuroinflammation and ASD-like behavior in the offspring prenatally exposed to CAF diet. We found that ADF increased plasma beta-hydroxybutyrate (BHB) levels in the offspring exposed to control and CAF diets but not in the cortex (Cx) and hippocampus (Hpp). We observed that ADF increased the CD45 + cells in Cx of both groups; In control individuals, ADF promoted accumulation of CD206 + microglia cells in choroid plexus (CP) and increased in CD45 + macrophages cells and lymphocytes in the Cx. Gestational exposure to CAF diet promoted defective sociability in the offspring; ADF improved social interaction and increased microglia CD206 + in the Hpp and microglia complexity in the dentate gyrus. Additionally, ADF led to attenuation of the ER stress markers (Bip/ATF6/p-JNK) in the Cx and Hpp. Finally, biological modeling showed that fasting promotes higher microglia complexity in Cx, which is related to improvement in social interaction, whereas in dentate gyrus sociability is correlated with less microglia complexity. These data suggest a contribution of intermittent fasting as a physiological stimulus capable of modulating microglia phenotype and complexity in the brain, and social interaction in male mice.

2.
eNeuro ; 11(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38212114

ABSTRACT

Prenatal exposure to high-energy diets (HED) increases the susceptibility to behavioral alterations in the male offspring. We addressed whether prenatal HED primes the transgenerational inheritance of structural brain changes impacting anxiety/depression-like behavior in the offspring. For this, we used female Wistar rats exposed to a HED [cafeteria (CAF) diet, n = 6] or chow [control (CON) n = 6] during development. Anxiety and depression-like behavior were evaluated in filial 1 (F1), filial 2 (F2), and filial 3 (F3) male offspring using the open field (OFT), elevated plus maze, novelty suppressed feeding (NSFT), tail suspension (TST), and forced swimming tests. Structural brain changes were identified by deformation-based morphometry (DBM) and diffusion tensor imaging using ex vivo MRI. We found that the F1, F2, and F3 offspring exposed to CAF diet displayed higher anxious scores including longer feeding latency during the NSFT, and in the closed arms, only F1 offspring showed longer stay on edges during the OFT versus control offspring. DBM analysis revealed that CAF offspring exhibited altered volume in the cerebellum, hypothalamus, amygdala, and hippocampus preserved up to the F3 generation of anxious individuals. Also, F3 CAF anxious exhibited greater fractional anisotropy and axial diffusivity (AD) in the amygdala, greater apparent diffusion coefficient in the corpus callosum, and greater AD in the hippocampus with respect to the control. Our results suggest that prenatal and lactation exposure to HED programs the transgenerational inheritance of structural brain changes related to anxiety-like behavior in the male offspring.


Subject(s)
Prenatal Exposure Delayed Effects , Pregnancy , Humans , Rats , Animals , Male , Female , Diffusion Tensor Imaging , Rats, Wistar , Lactation , Brain/diagnostic imaging , Diet , Anxiety
3.
Breastfeed Med ; 18(12): 934-942, 2023 12.
Article in English | MEDLINE | ID: mdl-38100442

ABSTRACT

Background: Breast milk (BM) is a nutritive fluid that is rich in bioactive components such as hormones and cytokines that can shape the newborn's feeding habits and program the newborn's immature immune system. BM components can change under different scenarios that include maternal body mass index (BMI) and premature birth. This study aimed to study the interaction of premature status or maternal obesity on the hormonal and cytokine profile in BM according to the sex of the offspring. Materials and Methods: We recruited 31 women with preterm births from the Centro de Alta Especialidad Dr. Rafael Lucio in Mexico. Luminex multiplexing assay was used for quantifying cytokine profile of monocyte chemoattractant protein-1, tumor necrosis factor (TNF)-α, interferon-γ, interleukin (IL)1-ß, IL-2, IL-4, IL-6, IL-7, and hormones insulin, ghrelin, leptin, and glucagon in mature BM samples. Biological modeling was performed to predict the interaction between cytokines and hormones, maternal BMI status, infant birth sex, parity, and gestational age. Results: BM multiplex analysis showed positive correlations for TNF-α and increasing prematurity and for higher maternal BMI and IL-2, IL-4, and IL-6 cytokines. Multiple regression models identified an interaction between maternal BMI and gestational weeks in male infants that is associated to TNF-α accumulation in BM. Biological modeling predicts that preterm delivery in mothers with obesity modulates TNF- α levels in mature BM of women with male offspring. Conclusion: Prematurity and obesity modify BM's immune profile. TNF- α expression increases as prematurity increases, and maternal BMI correlates positively with increases in IL-2, IL-6, and IL-4. Our multiple regression model also shows that maternal BMI and gestational weeks in male infants predict TNF-α.


Subject(s)
Milk, Human , Premature Birth , Female , Humans , Infant , Infant, Newborn , Male , Pregnancy , Breast Feeding , Cytokines , Interleukin-2 , Interleukin-4 , Interleukin-6/analysis , Milk, Human/chemistry , Obesity , Tumor Necrosis Factor-alpha/analysis
4.
Neuroscience ; 511: 70-85, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36592924

ABSTRACT

Prenatal exposure to high-energy diets primes brain alterations that increase the risk of developing behavioral and cognitive failures. Alterations in the structure and connectivity of brain involved in learning and memory performance are found in adult obese murine models and in humans. However, the role of prenatal exposure to high-energy diets in the modulation of the brain's structure and function during cognitive decline remains unknown. We used female C57BL6 mice (n = 10) exposed to a high-energy diets (Cafeteria diet (CAF)) or Chow diet for 9 weeks (before, during and after pregnancy) to characterize their effect on brain structural organization and learning and memory performance in the offspring at two-month-old (n = 17). Memory and learning performance were evaluated using the Y-maze test including forced and spontaneous alternation, novel object recognition (NORT), open field and Barnes maze tests. We found no alterations in the short- or long-time spatial memory performance in male offspring prenatally exposed to CAF diet when compared to the control, but they increased time spent in the edges resembling anxiety-like behavior. By using deformation-based morphometry and diffusion tensor imaging analysis we found that male offspring exposed to CAF diet showed increased volume in primary somatosensory cortex and a reduced volume of fimbria-fornix, which correlate with alterations in its white matter integrity. Biological modeling revealed that prenatal exposure to CAF diet predicts low volume in the fimbria-fornix, which was associated with anxiety in the offspring. The findings suggest that prenatal exposure to high-energy diets prime brain structural alterations related to anxiety in the offspring.


Subject(s)
Fornix, Brain , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Mice , Animals , Male , Female , Infant , Diffusion Tensor Imaging , Mice, Inbred C57BL , Diet , Anxiety/etiology , Maze Learning
5.
Neural Regen Res ; 18(2): 280-283, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35900403

ABSTRACT

Prenatal programming during pregnancy sets physiological outcomes in the offspring by integrating external or internal stimuli. Accordingly, pregnancy is an important stage of physiological adaptations to the environment where the fetus becomes exposed and adapted to the maternal milieu. Maternal exposure to high-energy dense diets can affect motivated behavior in the offspring leading to addiction and impaired sociability. A high-energy dense exposure also increases the pro-inflammatory cytokines profile in plasma and brain and favors microglia activation in the offspring. While still under investigation, prenatal exposure to high-energy dense diets promotes structural abnormalities in selective brain regions regulating motivation and social behavior in the offspring. The current review addresses the role of energy-dense foods programming central and peripheral inflammatory profiles during embryonic development and its effect on motivated behavior in the offspring. We provide preclinical and clinical evidence that supports the contribution of prenatal programming in shaping immune profiles that favor structural and brain circuit disruption leading to aberrant motivated behaviors after birth. We hope this minireview encourages future research on novel insights into the mechanisms underlying maternal programming of motivated behavior by central immune networks.

6.
Neuroreport ; 33(12): 495-503, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35776941

ABSTRACT

OBJECTIVE: This study aimed to characterize the molecular immune networks and microglia reactivity in the nucleus accumbens (NAc) shell affected by fetal nutritional programming leading to addiction-like behavior in the offspring of Wistar rats. Fetal nutritional programming by energy-dense foods leads to addiction-like behavior in the offspring. Exposure to energy-dense foods also activates systemic and central inflammation in the offspring. METHODS: Females Wistar rats were exposed to cafeteria (CAF) diet or control diet for 9 weeks (prepregnancy, pregnancy and lactation), and male offspring at 2 months of age were diagnosed with food addiction-like behavior using operant conditioning. Global microarray analysis, RTqPCR, proinflammatory plasma profile and microglia immunostaining were performed in the NAc shell of male rats. SIM-A9 microglia cells were stimulated with IFN-α and palmitic acid, and microglia activation and phagocytosis were determined by RTqPCR and incubation of green-fluorescent latex beads, respectively. RESULTS: Microarray analysis in the NAc shell of the male offspring exposed to CAF during development and diagnosed with addiction-like behavior showed increasing in the type I interferon-inducible gene, Ift1 , gene network. Genomic and cellular characterization also confirmed microglia hyperreactivity and upregulation of the Ifit1 in the NAc shell of animals with addiction-like behavior. In-vitro models demonstrated that microglia do respond to IFN-α promoting a time-dependent genomic expression of Ift1, IL-1ß and IL-6 followed by increased phagocytosis. CONCLUSION: Prenatal exposure to energy-dense foods primes the IFN type I signaling and microglia complexity in the NAc shell of rats diagnosed with food addiction-like behavior.


Subject(s)
Food Addiction , Interferon Type I , Pregnancy , Female , Rats , Animals , Male , Nucleus Accumbens/metabolism , Microglia/metabolism , Rats, Wistar , Food Addiction/metabolism , Interferon Type I/metabolism , Diet
7.
Neurochem Res ; 47(10): 3093-3103, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35767136

ABSTRACT

Maternal nutritional programming by energy-dense foods leads to the transgenerational heritance of addiction-like behavior. Exposure to energy-dense foods also activates systemic and central inflammation in the offspring. This study aimed to characterize pro- and anti-inflammatory cytokine profiles in blood and their correlation to the transgenerational heritance of the addiction-like behavior in rats. F1 offspring of male Wistar diagnosed with addiction-like behavior were mated with virgin females to generate the F2 and the F3 offspring, respectively. Diagnosis of addiction-like behavior was performed by the operant training schedule (FR1, FR5 and PR) and pro- and anti-inflammatory cytokine profiles in blood were measured by multiplex platform. Multiple linear models between behavior, fetal programming by diet and pro- and anti-inflammatory cytokine profiles were performed. We found that the addiction-like behavior found in the F1 male offspring exposed to energy-dense food (cafeteria, CAF) diet during fetal programing is transgenerational inherited to the F2 and F3 generations. Blood from addiction-like behavior subjects of F2 and F3 generations exposed to CAF diet during maternal programming showed decrease in the anti-inflammatory IL-10 in the plasma. Conversely, decreased levels of the pro-inflammatory MCP-1 was identified in non-addiction-like subjects. No changes were found in plasmatic TNF-α levels in the F2 and F3 offspring of non-addiction-like and addiction-like subjects. Finally, biological modeling between IL-10 or MCP-1 plasma levels and prenatal diet exposure on operant training responses confirmed an association of decreased IL-10 levels on addiction-like behavior in the F2 and F3 generations. Globally, we identified decreased anti-inflammatory IL-10 cytokine in the blood of F2 and F3 offspring subjects diagnosed with addiction-like behavior for food rewards.


Subject(s)
Food Addiction , Prenatal Exposure Delayed Effects , Animals , Anti-Inflammatory Agents , Conditioning, Operant , Female , Humans , Interleukin-10 , Male , Pregnancy , Rats , Rats, Wistar
8.
Mol Neurobiol ; 58(2): 703-718, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33006752

ABSTRACT

Central innate immunity assists time-dependent neurodevelopment by recruiting and interacting with peripheral immune cells. Microglia are the major player of central innate immunity integrating peripheral signals arising from the circumventricular regions lacking the blood-brain barrier (BBB), via neural afferent pathways such as the vagal nerve and also by choroid plexus into the brain ventricles. Defective and/or unrestrained activation of central and peripheral immunity during embryonic development might set an aberrant connectome establishment and brain function, leading to major psychiatric disorders in postnatal stages. Molecular candidates leading to central and peripheral innate immune overactivation identified metabolic substrates and lipid species as major contributors of immunological priming, supporting the role of a metabolic flexibility node during trained immunity. Mechanistically, trained immunity is established by an epigenetic program including DNA methylation and histone acetylation, as the major molecular epigenetic signatures to set immune phenotypes. By definition, immunological training sets reprogramming of innate immune cells, enhancing or repressing immune responses towards a second challenge which potentially might contribute to neurodevelopment disorders. Notably, the innate immune training might be set during pregnancy by maternal immune activation stimuli. In this review, we integrate the most valuable scientific evidence supporting the role of metabolic cues assisting metabolic flexibility, leading to innate immune training during development and its effects on aberrant neurological phenotypes in the offspring. We also add reports supporting the role of methylation and histone acetylation signatures as a major epigenetic mechanism regulating immune training.


Subject(s)
Immunity, Innate , Metabolism , Nervous System/growth & development , Nervous System/immunology , Animals , Epigenesis, Genetic , Humans , Immunity, Innate/genetics , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Lipids/chemistry , Metabolism/genetics
9.
Front Neurosci ; 14: 452, 2020.
Article in English | MEDLINE | ID: mdl-32581665

ABSTRACT

Fetal programming by hypercaloric intake leads to food addiction-like behavior and brain pro-inflammatory gene expression in offspring. The role of methylome modulation during programming on central immune activation and addiction-like behavior has not been characterized. We employed a nutritional programming model exposing female Wistar rats to chow diet, cafeteria (CAF), or CAF-methyl donor's diet from pre-pregnancy to weaning. Addiction-like behavior in offspring was characterized by the operant training response using Skinner boxes. Food intake in offspring was determined after fasting-refeeding schedule and subcutaneous injection of ghrelin. Genome-wide DNA methylation in the nucleus accumbens (NAc) shell was performed by fluorescence polarization, and brain immune activation was evaluated using real-time PCR for pro-inflammatory cytokines (IL-1ß, TNF-1α, and IL-6). Molecular effects of methyl modulators [S-adenosylmethionine (SAM) or 5-azatidine (5-AZA)] on pro-inflammatory cytokine expression and phagocytosis were identified in the cultures of immortalized SIM-A9 microglia cells following palmitic acid (100 µM) or LPS (100 nM) stimulation for 6 or 24 h. Our results show that fetal programming by CAF exposure increases the number of offspring subjects and reinforcers under the operant training response schedule, which correlates with an increase in the NAc shell global methylation. Notably, methyl donor's diet selectively decreases lever-pressing responses for reinforcers and unexpectedly decreases the NAc shell global methylation. Also, programmed offspring by CAF diet shows a selective IL-6 gene expression in the NAc shell, which is reverted to control values by methyl diet exposure. In vitro analysis identified that LPS and palmitic acid activate IL-1ß, TNF-1α, and IL-6 gene expression, which is repressed by the methyl donor SAM. Finally, methylation actively represses phagocytosis activity of SIM-A9 microglia cells induced by LPS and palmitic acid stimulation. Our in vivo and in vitro data suggest that fetal programming by methyl donors actively decreases addiction-like behavior to palatable food in the offspring, which correlates with a decrease in NAc shell methylome, expression of pro-inflammatory cytokine genes, and activity of phagocytic microglia. These results support the role of fetal programming in brain methylome on immune activation and food addiction-like behavior in the offspring.

SELECTION OF CITATIONS
SEARCH DETAIL
...