Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Mol Biochem Parasitol ; 260: 111646, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950658

ABSTRACT

The study aimed to conduct in vitro biological assessments of hydantoin and thiohydantoin compounds against mature Schistosoma mansoni worms, evaluate their cytotoxic effects and predict their pharmacokinetic parameters using computational methods. The compounds showed low in vitro cytotoxicity and were not considered hemolytic. Antiparasitic activity against adult S. mansoni worms was tested with all compounds at concentrations ranging from 200 to 6.25 µM. Compounds SC01, SC02, and SC03 exhibited low activity. Compounds SC04, SC05, SC06 and SC07 caused 100 % mortality within 24 h of incubation at a concentration of 100 and 200 µM. Thiohydantoin SC04 exhibited the highest activity, resulting in 100 % mortality after 24 h of incubation at a concentration of 50 µM and IC50 of 28 µM. In the ultrastructural analysis (SEM), the compound SC04 (200 µM) induced integumentary changes, formation of integumentary blisters, and destruction of tubercles and spicules. Therefore, the SC04 compound shows promise as an antiparasitic against S. mansoni.

2.
An Acad Bras Cienc ; 96(3): e20230811, 2024.
Article in English | MEDLINE | ID: mdl-38865509

ABSTRACT

Cancer is a complex and multifactorial disease characterized by uncontrolled cell growth and is one of the main causes of death in the world. This work aimed to evaluate a small series of 10 different indole-thiosemicarbazone compounds as potential antitumor agents. This is a pioneering study. For this, the antioxidant and cytotoxic capacity against normal and tumor cells was evaluated. The results showed that the compounds were able to promote moderate to low antioxidant activity for the ABTS radical scavenging assay. ADMET in silico assays showed that the compounds exhibited good oral bioavailability. As for toxicity, they were able to promote low cytotoxicity against normal cells, in addition to not being hemolytic. The compounds showed promising in vitro antitumor activity against the T47D, MCF-7, Jurkat and DU-145 strains, not being able to inhibit the growth of the Hepg2 strain. Through this in vitro study, it can be concluded that the compounds are potential candidates for antitumor agents.


Subject(s)
Antineoplastic Agents , Antioxidants , Indoles , Thiosemicarbazones , Humans , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacokinetics , Indoles/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antioxidants/pharmacology , Cell Line, Tumor , Computer Simulation , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects
3.
Parasitol Res ; 123(2): 143, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407619

ABSTRACT

The objective of the study was to evaluate the in vitro and in vivo schistosomicidal activity of sanguinarine (SA) on Schistosoma mansoni and its in silico pharmacokinetic parameters. ADMET parameters and oral bioavailability were evaluated using the PkCSM and SwissADME platforms, respectively. The activity of SA in vitro, at the concentrations of 1.0-25 µM, was analyzed through the parameters of motility, mortality, and cell viability of the worms at intervals of 3-24 h. Mice were infected with cercariae and treated by gavage with SA (5 mg/kg/day, in a single dose or two doses of 2.5 mg/kg every 12 h for 5 consecutive days) on the 1st (skin schistosomula), 14th (pulmonary schistosomula), 28th (young worms), and 45th (adult worms) days after infection. In vitro and in vivo praziquantel was the control. In vitro, SA showed schistosomicidal activity against schistosomula, young worms, and couples; with total mortality and reduced cell viability at low concentrations and incubation time. In a single dose of 5 mg/kg/day, SA reduces the total worm load by 47.6%, 54%, 55.2%, and 27.1%, and female worms at 52.0%, 39.1%, 52.7%, and 20.2%, respectively, results which are similar to the 2.5 mg/kg/day dose. SA reduced the load of eggs in the liver, and in histopathological and histomorphometric analyses, there was a reduction in the number and volume of hepatic granulomas, which exhibited less inflammatory infiltrate. SA has promising in vitro and in vivo schistosomicidal activity against different developmental stages of S. mansoni, in addition to reducing granulomatous liver lesions. Furthermore, in silico, SA showed good predictive pharmacokinetic ADMET profiles.


Subject(s)
Alkaloids , Anti-Infective Agents , Isoquinolines , Schistosomicides , Female , Animals , Mice , Antiparasitic Agents , Schistosoma mansoni , Benzophenanthridines/pharmacology , Alkaloids/pharmacology
4.
An Acad Bras Cienc ; 95(suppl 2): e20230566, 2023.
Article in English | MEDLINE | ID: mdl-38055446

ABSTRACT

In this work, an in silico study and evaluation of the cytotoxicity of 4-(4-chlorophenyl)thiazole compounds against mouse splenocytes and the chloroquine-sensitive Plasmodium falciparum 3D7 strain are reported. The in silico results showed that the compounds have important pharmacokinetic properties for compounds with potential drug candidates. Regarding cytotoxicity assays against splenocytes, the compounds have low cytotoxicity. In addition, they were able to promote activation of these cells by increasing nitric oxide production without promoting cell death. Finally, they were able to promote cell proliferation. Regarding the in vitro anti-P. falciparum activity assays, it was observed that the compounds were able to inhibit the parasite's growth, presenting IC50 values ​​ranging from 0.79 to greater than 10 µM. These results are promising when compared to chloroquine. Therefore, this study showed that 4-(4-chlorophenyl)thiazole compounds are promising candidates for antimalarials.


Subject(s)
Antimalarials , Folic Acid Antagonists , Animals , Mice , Antimalarials/pharmacology , Thiazoles , Spleen , Chloroquine/pharmacology , Plasmodium falciparum
5.
3 Biotech ; 13(12): 391, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37953832

ABSTRACT

Clarisia racemosa Ruiz & Pav is a neotropical species found in humid forests from southern Mexico to southern Brazil. There are few studies related to the ethnopharmacological use of C. racemosa. Our objective was to evaluate the hydroalcoholic extract of C. racemosa as a potential antiparasitic agent. For this, we performed in vitro assays against strains of Leishmania amazonensis, Trypanosoma cruzi, Plasmodium falciparum, and Schistosoma mansoni. At the same time, immunomodulatory activity tests were carried out. The results demonstrated that the extract was able to stimulate and activate immune cells. In preliminary antiparasitic tests, structural modifications were observed in the promastigote form of L. amazonensis and in adult worms of S. mansoni. The extract was able to inhibit the growth of trypomastigote form of T. cruzi and finally showed low antiparasitic activity against strains of P. falciparum. It is pioneering work and these results demonstrate that C. racemosa extract is a promising alternative and contributes to the arsenal of possible forms of treatment to combat parasites. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03799-2.

6.
Int J Biol Macromol ; 250: 126225, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37558029

ABSTRACT

In this context, the objective of this work was to isolate an alkaline lignin from the leaves of C. ferrea, in addition to investigating different biological activities and its use in the production of releasing tablets in vitro. Initially, the analysis of the composition of the leaves was performed, the contents were: cellulose (33.09 ± 0.3 %), hemicellulose (25.13 ± 0.1 %), lignin (18.29 ± 0.1 %), extractives (17.28 ± 1.0 %) and ash (6.20 ± 0.1 %). The leaves were fractionated to obtain alkaline lignin. The yield of obtaining lignin was 80.12 ± 0.1 %. The obtained lignin was characterized by the techniques: elemental analysis, FTIR, UV/Vis, 2D-NMR, GPC, TGA/DTG, DSC and PY-GC/MS. The results showed that the lignin obtained is of the GSH type, of low molecular weight and thermally stable. The in vitro antioxidant activity was evaluated by different assays promoting results only for DPPH (559.9 ± 0.8 µg/mL) and ABTS (484.1 ± 0.1 µg/mL) being able to promote low antioxidant activity. In addition, it showed low cytotoxicity in normal mammalian cells and promising antitumor and trypanocidal activity. Regarding antimicrobial activity, it was able to inhibit the growth of a strain of Staphylococcus aureus resistant to methicillin, presenting MIC values equal to the standard antibiotic oxacillin. It was also able to inhibit a strain of Candida albicans HAM13 sensitive to fluconazole. In addition, lignin promoted a synergistic effect by promoting a decrease in MIC against these two strains evaluated. Finally, lignin proved to be an excipient with potential for controlled release of antimicrobials.

7.
Acta Trop ; 245: 106965, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37295486

ABSTRACT

The present work aimed to carry out in vitro biological assays of thiazole compounds against adult worms of Schistosoma mansoni, as well as the in silico determination of pharmacokinetic parameters to predict the oral bioavailability of these compounds. In addition to presenting moderate to low cytotoxicity against mammalian cells, thiazole compounds are not considered hemolytic. All compounds were initially tested at concentrations ranging from 200 to 6.25 µM against adult worms of S. mansoni parasites. The results showed the best activity of PBT2 and PBT5 at a concentration of 200 µM, which caused 100% mortality after 3 h of incubation. While at 6 h of exposure, 100% mortality was observed at the concentration of 100 µM. Subsequent studies with these same compounds allowed classifying PBT5, PBT2, PBT6 and PBT3 compounds, which were considered active and PBT1 and PBT4 compounds, which were considered inactive. In the ultrastructural analysis the compounds PBT2 and PBT5 (200 µM) promoted integumentary changes with exposure of the muscles, formation of integumentary blisters, integuments with abnormal morphology and destruction of tubercles and spicules. Therefore, the compounds PBT2 and PBT5 are promising antiparasitics against S. mansoni.


Subject(s)
Schistosomiasis mansoni , Schistosomicides , Animals , Schistosoma mansoni/ultrastructure , Thiazoles/pharmacology , Thiazoles/therapeutic use , Schistosomicides/pharmacology , Schistosomicides/therapeutic use , Antiparasitic Agents/therapeutic use , Schistosomiasis mansoni/drug therapy , Mammals
8.
An Acad Bras Cienc ; 95(1): e20220538, 2023.
Article in English | MEDLINE | ID: mdl-37132749

ABSTRACT

Neglected tropical diseases are a diverse group of communicable pathologies that mainly prevail in tropical and subtropical regions. Thus, the objective of this work was to evaluate the biological potential of eight 4-(4-chlorophenyl)thiazole compounds. Tests were carried out in silico to evaluate the pharmacokinetic properties, the antioxidant, cytotoxic activities in animal cells and antiparasitic activities were evaluated against the different forms of Leishmania amazonensis and Trypanosoma cruzi in vitro. The in silico study showed that the evaluated compounds showed good oral availability. In a preliminary in vitro study, the compounds showed moderate to low antioxidant activity. Cytotoxicity assays show that the compounds showed moderate to low toxicity. In relation to leishmanicidal activity, the compounds presented IC50 values that ranged from 19.86 to 200 µM for the promastigote form, while for the amastigote forms, IC50 ranged from 101 to more than 200 µM. The compounds showed better results against the forms of T. cruzi with IC50 ranging from 1.67 to 100 µM for the trypomastigote form and 1.96 to values greater than 200 µM for the amastigote form. This study showed that thiazole compounds can be used as future antiparasitic agents.


Subject(s)
Chagas Disease , Leishmania mexicana , Trypanocidal Agents , Trypanosoma cruzi , Animals , Trypanocidal Agents/pharmacology , Chagas Disease/drug therapy , Antiparasitic Agents/pharmacology
9.
3 Biotech ; 13(4): 114, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36909979

ABSTRACT

The objective of this work was to isolate a polysaccharide similar to pectin from Crataeva tapia leaves, not yet reported in the literature, and to evaluate its antioxidant, cytotoxic and immunomodulatory profile. Pectin was extracted from the leaves in three stages, organic solvent followed by acidified water and ethanol precipitation. With the pectin obtained, the physicochemical characterization of the molecule was carried out using high-performance liquid chromatography, Fourier-transform infrared spectroscopy, nuclear magnetic resonance (13C and 1H) and different thermal and elemental analysis. Furthermore, the antioxidant activities were evaluated in vitro, and using human peripheral blood mononuclear cell culture, cytotoxicity and immunostimulatory actions were investigated. Physical and chemical analyses showed characteristic signs of pectin. Antioxidant activity tests showed that pectin had moderate to low antioxidant activity. Furthermore, pectin did not affect the viability of erythrocytes and PBMC and induced an immunostimulatory state when it promoted the production of cytokines IL-6, IL-10 and TNF-α and increased the activation of CD8 + T lymphocytes. This study showed that pectin from Crataeva tapia is not cytotoxic and promoted a pro-inflammatory profile in peripheral blood mononuclear cell with application as an immunostimulating and emulsifying compound.

10.
Exp Parasitol ; 248: 108498, 2023 May.
Article in English | MEDLINE | ID: mdl-36907541

ABSTRACT

In this work, 13 thiosemicarbazones (1a - m) and 16 thiazoles (2a - p) were obtained, which were properly characterized by spectroscopic and spectrometric techniques. The pharmacokinetic properties obtained in silico revealed that the derivatives are in accordance with the parameters established by lipinski and veber, showing that such compounds have good bioavailability or permeability when administered orally. In assays of antioxidant activity, thiosemicarbazones showed moderate to high antioxidant potential when compared to thiazoles. In addition, they were able to interact with albumin and DNA. Screening assays to assess the toxicity of compounds to mammalian cells revealed that thiosemicarbazones were less toxic when compared to thiazoles. In relation to in vitro antiparasitic activity, thiosemicarbazones and thiazoles showed cytotoxic potential against the parasites Leishmania amazonensis and Trypanosoma cruzi. Among the compounds, 1b, 1j and 2l stood out, showing inhibition potential for the amastigote forms of the two parasites. As for the in vitro antimalarial activity, thiosemicarbazones did not inhibit Plasmodium falciparum growth. In contrast, thiazoles promoted growth inhibition. This study shows in a preliminary way that the synthesized compounds have antiparasitic potential in vitro.


Subject(s)
Thiosemicarbazones , Trypanosoma cruzi , Animals , Antioxidants/pharmacology , Antiparasitic Agents/toxicity , Structure-Activity Relationship , Thiazoles/pharmacology , Thiazoles/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Mammals
11.
3 Biotech ; 13(3): 93, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36845077

ABSTRACT

This work aimed to isolate and characterize xylans from branches and leaves of Protium puncticulatum, in addition to evaluating its in vitro biological and prebiotic potential. The results showed that the chemical structure of the obtained polysaccharides is similar being classified as homoxylans. The xylans presented an amorphous structure, in addition to being thermally stable and presenting a molecular weight close to 36 g/mol. With regard to biological activities, it was observed that xylans were able to promote low antioxidant activity (< 50%) in the different assays evaluated. The xylans also showed no toxicity against normal cells, in addition to being able to stimulate cells of the immune system and showing promise as anticoagulant agents. In addition to presenting promising antitumor activity in vitro. In assays of emulsifying activity, xylans were able to emulsify lipids in percentages below 50%. Regarding in vitro prebiotic activity, xylans were able to stimulate and promote the growth of different probiotics. Therefore, this study, in addition to being a pioneer, contributes to the application of these polysaccharides in the biomedical and food areas. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03506-1.

12.
Int J Biol Macromol ; 234: 123606, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36773880

ABSTRACT

In this work we will discuss the antiproliferative evaluation and the possible mechanisms of action of indole-thiosemicarbazone compounds LTs with anti-inflammatory activity, previously described in the literature. In this perspective, some analyzes were carried out, such as the study of binding to human serum albumin (HSA) and to biological targets: DNA and human topoisomerase IIα (topo). Antiproliferative study was performed with DU-145, Jukart, MCF-7 and T-47D tumor lines and J774A.1, besides HepG2 macrophages and hemolytic activity. In the HSA interaction tests, the highest binding constant was 3.70 × 106 M-1, referring to LT89 and in the fluorescence, most compounds, except for LT76 and LT87, promoted fluorescent suppression with the largest Stern-Volmer constant for the LT88 3.55 × 104. In the antiproliferative assay with DU-145 and Jurkat strains, compounds LT76 (0.98 ± 0.10/1.23 ± 0.32 µM), LT77 (0.94 ± 0.05/1.18 ± 0.08 µM) and LT87 (0.94 ± 0.12/0.84 ± 0.09 µM) stood out, due to their IC50 values mentioned above. With the MCF-7 and T-47D cell lines, the lowest IC50 was presented by LT81 with values of 0.74 ± 0.12 µM and 0.68 ± 0.10 µM, respectively, followed by the compounds LT76 and LT87. As well as the positive control amsacrine, the compounds LT76, LT81 and LT87 were able to inhibit the enzymatic action of human Topoisomerase IIα.


Subject(s)
Antineoplastic Agents , Thiosemicarbazones , Humans , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Cell Line, Tumor , Topoisomerase II Inhibitors/pharmacology , DNA/pharmacology , DNA Topoisomerases, Type II/metabolism , Indoles/pharmacology , Indoles/chemistry , Cell Proliferation
13.
Int J Biol Macromol ; 231: 123339, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36682648

ABSTRACT

The Amazon rainforest is considered the largest tropical timber reserve in the world. The management of native forests in the Amazon is one of the most sensitive geopolitical issues today, given its national and international dimension. In this work, we obtained and characterized physicochemical lignins extracted from branches and leaves of Protium puncticulatum and Scleronema micranthum. In addition, we evaluated in vitro its potential as an antioxidant, cytotoxic agent against animal cells and antiparasitic against promastigotes of Leishmania amazonensis, trypomastigotes of T. cruzi and against Plasmodium falciparum parasites sensitive and resistant to chloroquine. The results showed that the lignins obtained are of the GSH type and have higher levels of guaiacyl units. However, they show structural differences as shown by spectroscopic analysis and radar charts. As for biological activities, they showed antioxidant potential and low cytotoxicity against animal cells. Antileishmanial/trypanocidal assays have shown that lignins can inhibit the growth of promastigotes and trypomastigotes in vitro. The lignins in this study showed low anti-Plasmodium falciparum activity against susceptible strains of Plasmodium falciparum and were able to inhibit the growth of the chloroquine-resistant strain. And were not able to inhibit the growth of Schistosoma mansoni parasites. Finally, lignins proved to be promising excipients in the release of benznidazole. These findings show the potential of these lignins not yet studied to promote different biological activities.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Animals , Antiparasitic Agents/therapeutic use , Lignin/therapeutic use , Excipients , Antioxidants/therapeutic use , Chagas Disease/drug therapy , Chloroquine
14.
Int J Biol Macromol ; 219: 224-245, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-35926677

ABSTRACT

In this work, we investigated in vitro different biological activities of alkaline lignins extracted from the species Buchenavia viridiflora, a tree from the Amazon rainforest used as a wood product. The chemical composition results for the twig and leaves were, respectively (%): cellulose (30.88 and 24. 28), hemicellulose (21.62 and 23.03), lignin (29.93 and 25.46), extractives (13.06 and 20.52), and ash (4.51 and 6.72). The yield was higher for the lignin of the branches (67.9 %) when compared to the leaves (60.2 %). Lignins are of the GSH type, low molecular weight and thermally stable. They promoted moderate to low antioxidant activity, highlighting the lignin of the branches, which presented an IC50 of 884.56 µg/mL for the DPPH assay and an IC50 of 14.08 µg/mL for ABTS. In the cytotoxicity assays, they showed low toxicity against macrophage cells (IC50 28.47 and 22.58 µg/mL). In addition, they were not cytotoxic against splenocytes and erythrocytes at concentrations ranging from 100 to 6.25 µg/mL. These were able to promote splenocyte proliferation and induce the production of anti-inflammatory cytokines. And inhibit the growth of tumor cells with IC50 ranging from 12.63 to values >100 µg/mL and microbial at a concentration of 512 µg/mL. Finally, they showed antiparasitic activity by inhibiting the growth of chloroquine-sensitive and resistant Plasmodium falciparum strains. These findings reinforce that the lignins in this study are promising for potential pharmaceutical and biomedical applications.


Subject(s)
Antioxidants , Lignin , Antioxidants/chemistry , Antioxidants/pharmacology , Antiparasitic Agents , Chloroquine , Cytokines , Lignin/chemistry , Lignin/pharmacology , Pharmaceutical Preparations , Plant Extracts/pharmacology
15.
Exp Parasitol ; 236-237: 108253, 2022.
Article in English | MEDLINE | ID: mdl-35381223

ABSTRACT

Neglected diseases, such as Leishmaniasis, constitute a group of communicable diseases that occur mainly in tropical countries. Considered a public health problem with limited treatment. Therefore, there is a need for new therapies. In this sense, our proposal was to evaluate in vitro two series of thiazolidine compounds (7a-7e and 8a-8e) against Leishmania infantum. We performed in vitro evaluations through macrophage cytotoxicity assays (J774) and nitric oxide production, activity against promastigotes and amastigotes, as well as ultrastructural analyzes in promastigotes. In the evaluation of cytotoxicity, the thiazolidine compounds presented CC50 values between 8.52 and 126.83 µM. Regarding the evaluation against the promastigote forms, the IC50 values ranged between 0.42 and 142.43 µM. Compound 7a was the most promising, as it had the lowest IC50. The parasites treated with compound 7a showed several changes, such as cell body shrinkage, shortening and loss of the flagellum, intense mitochondrial edema and cytoplasmic vacuolization, leading the parasite to cell inviability. In assays against the amastigote forms, the compound showed a low IC50 (0.65 µM). These results indicate that compound 7a was efficient for both evolutionary forms of the parasite. In silico studies suggest that the compound has good oral bioavailability. These results show that compound 7a is a potential drug candidate for the treatment of Leishmaniasis.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Leishmaniasis , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/toxicity , Humans , Leishmaniasis/drug therapy , Macrophages/parasitology , Thiazolidines/toxicity
16.
Braz. arch. biol. technol ; 65: e22200718, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1364454

ABSTRACT

Abstract Studies have shown that Caesalpinia pulcherrima extracts promote antioxidant, healing, immunomodulating and antiparasitic activities and its polysaccharides can be used as functional food. In this sense, this work had as objective the isolation and characterization of a polysaccharide-like pectin, extracted from the C. pulcherrima leaves and its possible applications as an antioxidant and immunomodulator agent. The molecule was characterized by high performance liquid chromatography, fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. Its antioxidant potential was evaluated through the methods of phosphomolybdenum, ABTS radical scavenging [2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid], DPPH (1,1-diphenyl-2-picrylhydrazyl) and nitric oxide radical. The immunostimulating effects of pectin were tested in splenocytes to evaluate its toxic, proliferative and cell activator and immunomodulatory potential. The polysaccharide obtained has structural characteristics similar to pectins. Pectin showed high in vitro antioxidant activity for ABTS radical scavenging, moderate activity for phosphomolybdenum and low activity for DPPH and nitric oxide. In vitro immunomodulation assays showed that pectin obtained did not promote a cytotoxic effect (viability > 90%). The increase in cytosolic ROS levels indicates a possible mechanism of cell activation without causing damage. Immunophenotyping showed that pectin increased a subpopulation of CD8+ T lymphocytes and monocytes. In addition, it promoted a mostly pro-inflammatory response confirmed by the production of cytokines IL-2, -4, -6, IFN-γ and TNF-α. These results reinforce the ethnopharmacological use of C. pulcherrima leaves and expand the use of this plant for future applications as herbal medicines.

17.
Int J Biol Macromol ; 193(Pt B): 1799-1812, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34774863

ABSTRACT

In this work, we investigated in vitro the antioxidant, cytotoxic and anti-leishmanial activities of a lignin extracted from the leaves of Morinda citrifolia. Initially, an analysis of the composition of the sheets was performed, then the lignin was obtained by alkaline delignification and characterized by different techniques: elemental analysis, FT-R, UV-vis, HSQC-NMR, thermal analysis, Py-GC/MS and by GPC. The results showed that the leaves had in their composition cellulose (31.29%), hemicellulose (25.01%), lignin (18.34%), extractives (14.39%) and ash (10.03%). The lignin extraction yield was 89.8%. The lignin obtained is of the GSH type with the following contents 79.39%, 13.58% and 7.03% respectively. Furthermore, it is low molecular weight and thermally stable. It had a phenolic content of 93.3 mg GAE/g and low antioxidant activity. In macrophage cytotoxicity assays, it presented a CC50 of 31.0 µg/mL, showing less toxicity than amphotericin B. In assays against the promastigote forms of Leishmania amazonensis, lignin presented an IC50 of 29.56 µg/mL, a less effective concentration than amphotericin B (IC50 = 0.14 µg/mL). However, it was able to promote inhibition of the parasites, a fact confirmed by structural changes. These findings reinforce that M. citrifolia lignin is a promising macromolecule for use as an antiparasitic and antioxidant agent.


Subject(s)
Antioxidants , Antiprotozoal Agents , Cytotoxins , Leishmania/growth & development , Lignin , Morinda/chemistry , Plant Leaves/chemistry , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Cell Line , Cytotoxins/chemistry , Cytotoxins/pharmacology , Drug Evaluation, Preclinical , Lignin/chemistry , Lignin/pharmacology , Mice
18.
Int J Biol Macromol ; 180: 286-298, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33737189

ABSTRACT

Lignins are phenolic macromolecules that have several applications. In this work, we examine some biological activities of a lignin-like macromolecule isolated from the Crataeva tapia leaves, not yet studied to evaluate its potential applications in medicinal and cosmetic formulations. Lignin was obtained by alkaline delignification and its physical-chemical characterization was made by means of FT-IR, UV-Vis, NMR spectroscopy, elementary analysis, molecular mass determination and thermal analysis. Lignin is of the GSH type, with levels of hydrogen (5.10%), oxygen (27.18%), carbon (67.60%), nitrogen (0.12%) and phenolic content of 189.6 ± 9.6 mg GAE/g. In addition, it is a thermally stable macromolecule with low antioxidant activity. Cytotoxicity and cytokine production were assessed by flow cytometry. The photoprotective activity was evaluated by adding different concentrations of lignin to a commercial cream. Lignin was not cytotoxic, it stimulated the production of TNF-α, IL-6 and IL-10 and did not promote a significant change in nitric oxide levels. In addition, this macromolecule was able to promote increased absorption of ultraviolet light from a commercial cream. These results reinforce the ethnopharmacological use of C. tapia leaves and suggest the need for further studies to determine the potential medicinal and cosmetic applications (sunscreen) of lignin from C. tapia leaves.


Subject(s)
Antioxidants/chemistry , Capparaceae/chemistry , Lignin/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Sunscreening Agents/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Blood Donors , Cell Survival/drug effects , Cells, Cultured , Cosmetics/chemistry , Cytokines/biosynthesis , Humans , Lignin/isolation & purification , Lignin/pharmacology , Lymphocytes/drug effects , Lymphocytes/metabolism , Molecular Weight , Monocytes/drug effects , Monocytes/metabolism , Phenols/analysis , Plant Extracts/isolation & purification , Signal Transduction/drug effects , Skin Absorption/drug effects , Sunscreening Agents/isolation & purification , Sunscreening Agents/pharmacology , Ultraviolet Rays
19.
Nat Prod Res ; 35(24): 5862-5866, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32762448

ABSTRACT

The leaves of P. edulis were subjected to physicochemical analysis, such as ion content, extractives, and structural molecules. The hexanic, ethanolic and ethyl acetate extracts were submitted to phytochemical analyzes by GC-MS, HPLC-MS, and spectrophotometry. In addition, antioxidant (DPPH, ABTS and TAA methods) potential, antimicrobial (MIC method) action, cytotoxicity and immunostimulant activity (flow cytometry analysis) were performed. The extracts showed a moderate antioxidant capacity and revealed the presence of several metabolites, mainly phenols, such as caffeic acid, p-coumaric acid and luteolin. The ethyl acetate and ethanolic extracts showed antifungal activity. In addition, the extracts did not affect splenocytes viability at 12.5 µg/mL and promoted the production of IL-6, IL-10, IL-17 and TNF-α cytokines. P. edulis extracts showed antifungal and antioxidant activity and were able to induce immunostimulatory action in splenocyte cultures in vitro.


Subject(s)
Anti-Infective Agents , Passiflora , Passifloraceae , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacology
20.
Int J Biol Macromol ; 162: 1725-1733, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32777417

ABSTRACT

Caesalpinia pulcherrima is a shrub with worldwide distribution used as an ornamental plant. In this study, we extracted a lignin from the C. pulcherrima leaves and investigated its biological functions. The lignin was characterized by FT-IR, UV-Vis, GPC, TGA and nuclear magnetic resonance (1H and 13C). The antioxidant activity was evaluated using phosphomolybdenum complexation methods (TAA), sequestration of DPPH and ABTS radicals, reducing power, formation of nitrite radical and iron chelating activity (Fe2 +). Antifungal activity was made using Candida spp., Aspergillus spp. and Cryptococcus neoformans strains. Cytotoxicity, oxidative stress, and cytokine production were performed using mouse splenocytes. The lignin showed maximal UV-Vis at ~280 nm, 22.27 L/g·cm of absorptivity and, 2,503 kDa of molecular weight. Phenolic compounds (41.33 ± 0.65 mg GAE/g) and indications of a guaiacyl-syringyl-hydroxyphenyl (GSH)-type composition were found. Antioxidant activities of lignin to TAA (40±1.2%) and to DPPH (16.9±0.2%) was high and showed antifungal potential, especially against Candida spp. (IC50 = 31.3 µg/mL) and C. neoformans (15.6 µg/mL). In mouse splenocytes, the lignin was not cytotoxic and stimulated the cell proliferation and cytokine release. These results indicate that C. pulcherrima lignin has the potential to be used as antifungal and immunostimulant compound.


Subject(s)
Antifungal Agents , Antioxidants , Caesalpinia/chemistry , Immunologic Factors , Lignin , Plant Extracts/pharmacology , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Cell Proliferation/drug effects , Cells, Cultured , Cytokines/metabolism , Female , Fungi/drug effects , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Lignin/chemistry , Lignin/pharmacology , Mice , Mice, Inbred BALB C , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...