Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ISME J ; 9(5): 1093-104, 2015 May.
Article in English | MEDLINE | ID: mdl-25350157

ABSTRACT

Denitrification and respiratory ammonification are two competing, energy-conserving NO3(-)/NO2(-) reduction pathways that have major biogeochemical consequences for N retention, plant growth and climate. Batch and continuous culture experiments using Shewanella loihica strain PV-4, a bacterium possessing both the denitrification and respiratory ammonification pathways, revealed factors that determine NO3(-)/NO2(-) fate. Denitrification dominated at low carbon-to-nitrogen (C/N) ratios (that is, electron donor-limiting growth conditions), whereas ammonium was the predominant product at high C/N ratios (that is, electron acceptor-limiting growth conditions). pH and temperature also affected NO3(-)/NO2(-) fate, and incubation above pH 7.0 and temperatures of 30 °C favored ammonium formation. Reverse-transcriptase real-time quantitative PCR analyses correlated the phenotypic observations with nirK and nosZ transcript abundances that decreased up to 1600-fold and 27-fold, respectively, under conditions favoring respiratory ammonification. Of the two nrfA genes encoded on the strain PV-4 genome, nrfA0844 transcription decreased only when the chemostat reactor received medium with the lowest C/N ratio of 1.5, whereas nrfA0505 transcription occurred at low levels (≤3.4 × 10(-2) transcripts per cell) under all growth conditions. At intermediate C/N ratios, denitrification and respiratory ammonification occurred concomitantly, and both nrfA0844 (5.5 transcripts per cell) and nirK (0.88 transcripts per cell) were transcribed. Recent findings suggest that organisms with both the denitrification and respiratory ammonification pathways are not uncommon in soil and sediment ecosystems, and strain PV-4 offers a tractable experimental system to explore regulation of dissimilatory NO3(-)/NO2(-) reduction pathways.


Subject(s)
Denitrification , Ecosystem , Nitrates/metabolism , Shewanella/metabolism , Ammonium Compounds/metabolism , Carbon/metabolism , Environmental Microbiology , Genome, Bacterial , Hydrogen-Ion Concentration , Nitrogen/metabolism , Polymerase Chain Reaction , Soil , Temperature
2.
Proc Natl Acad Sci U S A ; 109(48): 19709-14, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23150571

ABSTRACT

Agricultural and industrial practices more than doubled the intrinsic rate of terrestrial N fixation over the past century with drastic consequences, including increased atmospheric nitrous oxide (N(2)O) concentrations. N(2)O is a potent greenhouse gas and contributor to ozone layer destruction, and its release from fixed N is almost entirely controlled by microbial activities. Mitigation of N(2)O emissions to the atmosphere has been attributed exclusively to denitrifiers possessing NosZ, the enzyme system catalyzing N(2)O to N(2) reduction. We demonstrate that diverse microbial taxa possess divergent nos clusters with genes that are related yet evolutionarily distinct from the typical nos genes of denitirifers. nos clusters with atypical nosZ occur in Bacteria and Archaea that denitrify (44% of genomes), do not possess other denitrification genes (56%), or perform dissimilatory nitrate reduction to ammonium (DNRA; (31%). Experiments with the DNRA soil bacterium Anaeromyxobacter dehalogenans demonstrated that the atypical NosZ is an effective N(2)O reductase, and PCR-based surveys suggested that atypical nosZ are abundant in terrestrial environments. Bioinformatic analyses revealed that atypical nos clusters possess distinctive regulatory and functional components (e.g., Sec vs. Tat secretion pathway in typical nos), and that previous nosZ-targeted PCR primers do not capture the atypical nosZ diversity. Collectively, our results suggest that nondenitrifying populations with a broad range of metabolisms and habitats are potentially significant contributors to N(2)O consumption. Apparently, a large, previously unrecognized group of environmental nosZ has not been accounted for, and characterizing their contributions to N(2)O consumption will advance understanding of the ecological controls on N(2)O emissions and lead to refined greenhouse gas flux models.


Subject(s)
Bacteria/classification , Genetic Variation , Nitrification , Oxidoreductases/genetics , Soil Microbiology , Bacteria/enzymology , Bacteria/genetics , Base Sequence , DNA Primers , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction
3.
BMC Microbiol ; 11: 64, 2011 Mar 30.
Article in English | MEDLINE | ID: mdl-21450087

ABSTRACT

BACKGROUND: EtrA in Shewanella oneidensis MR-1, a model organism for study of adaptation to varied redox niches, shares 73.6% and 50.8% amino acid sequence identity with the oxygen-sensing regulators Fnr in E. coli and Anr in Pseudomonas aeruginosa, respectively; however, its regulatory role of anaerobic metabolism in Shewanella spp. is complex and not well understood. RESULTS: The expression of the nap genes, nrfA, cymA and hcp was significantly reduced in etrA deletion mutant EtrA7-1; however, limited anaerobic growth and nitrate reduction occurred, suggesting that multiple regulators control nitrate reduction in this strain. Dimethyl sulfoxide (DMSO) and fumarate reductase gene expression was down-regulated at least 2-fold in the mutant, which, showed lower or no reduction of these electron acceptors when compared to the wild type, suggesting both respiratory pathways are under EtrA control. Transcript analysis further suggested a role of EtrA in prophage activation and down-regulation of genes implicated in aerobic metabolism. CONCLUSION: In contrast to previous studies that attributed a minor regulatory role to EtrA in Shewanella spp., this study demonstrates that EtrA acts as a global transcriptional regulator and, in conjunction with other regulators, fine-tunes the expression of genes involved in anaerobic metabolism in S. oneidensis strain MR-1. Transcriptomic and sequence analyses of the genes differentially expressed showed that those mostly affected by the mutation belonged to the "Energy metabolism" category, while stress-related genes were indirectly regulated in the mutant possibly as a result of a secondary perturbation (e.g. oxidative stress, starvation). We also conclude based on sequence, physiological and expression analyses that this regulator is more appropriately termed Fnr and recommend this descriptor be used in future publications.


Subject(s)
Bacterial Proteins/metabolism , Energy Metabolism , Gene Expression Regulation, Bacterial , Metabolic Networks and Pathways/genetics , Shewanella/physiology , Transcription Factors/metabolism , Anaerobiosis , Bacterial Proteins/genetics , Gene Deletion , Gene Expression Profiling , Nitrates/metabolism , Sequence Analysis, DNA , Shewanella/genetics , Shewanella/growth & development , Shewanella/metabolism , Transcription Factors/genetics
4.
Environ Sci Technol ; 45(2): 712-8, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21126083

ABSTRACT

Coupling thermal treatment with microbial reductive dechlorination is a promising remedy for tetrachloroethene (PCE) and trichloroethene (TCE) contaminated source zones. Laboratory experiments evaluated Dehalococcoides (Dhc) dechlorination performance, viability, and biomarker gene (DNA) and transcript (mRNA) abundances during exposure to elevated temperatures. The PCE-dechlorinating consortia BDI and OW produced ethene when incubated at temperatures of 30 °C, but vinyl chloride (VC) accumulated when cultures were incubated at 35 or 40 °C. Cultures incubated at 40 °C for less than 49 days resumed VC dechlorination following cooling; however, incubation at 45 °C resulted in complete loss of dechlorination activity. Dhc 16S rRNA, bvcA, and vcrA gene abundances in cultures showing complete dechlorination to ethene at 30 °C exceeded those measured in cultures incubated at higher temperatures, consistent with observed dechlorination activities. Conversely, biomarker gene transcript abundances per cell in cultures incubated at 35 and 40 °C were generally at least one order-of-magnitude greater than those measured in ethene-producing cultures incubated at 30 °C. Even in cultures accumulating VC, transcription of the vcrA gene, which is implicated in VC-to-ethene dechlorination, was up-regulated. Temperature stress caused the up-regulation of Dhc reductive dehalogenase gene expression indicating that Dhc gene expression measurements should be interpreted cautiously as Dhc biomarker gene transcript abundances may not correlate with dechlorination activity.


Subject(s)
Chlorine/metabolism , Chloroflexi/metabolism , DNA, Bacterial , Environmental Pollutants/metabolism , RNA, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Biomarkers/metabolism , Chloroflexi/genetics , Genes, Bacterial , Halogenation , Hot Temperature , Tetrachloroethylene/metabolism , Trichloroethylene/metabolism
5.
Environ Sci Technol ; 42(15): 5718-26, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18754499

ABSTRACT

Oxygen-sensitive Dehalococcoides bacteria play crucial roles in detoxification of chlorinated contaminants (e.g., chlorinated ethenes), and bioremediation monitoring relies on quantification of Dehalococcoides DNA and RNA biomarkers. To explore the effects of oxygen on Dehalococcoides activity, viability, and biomarker quantification, batch experiments with a tetrachloroethene-to-ethene dechlorinating consortium (Bio-Dechlor INOCULUM [BDI]) harboring multiple Dehalococcoides strains were performed to quantify the effects of < or = 4 mg/L dissolved oxygen. Oxygen inhibited reductive dechlorination, and only incomplete dechlorination to vinyl chloride (VC) occurred following oxygen consumption and extended incubation periods (89 days). Following 30 days of oxygen exposure and subsequent oxygen removal (i.e., reversibility experiments), all trichloroethene- (TCE-) fed cultures dechlorinated TCE to VC, but VC dechlorination to ethene occurred in only one out of fourteen replicates. These results suggest that Dehalococcoides strains respond differently to oxygen exposure, and strains catalyzing the VC-to-ethene dechlorination step are more susceptible to oxygen inhibition. Quantitative real-time PCR (qPCR) analysis detected a 1-1.5 order-of-magnitude decrease in the number of Dehalococcoides biomarker genes (i.e., 16S rRNA gene and the reductive dehalogenase [RDase] genes tceA, vcrA, bvcA) in the oxygen-amended cultures, but qPCR analysis failed to distinguish viable, dechlorinating from irreversibly inhibited (nonviable) Dehalococcoides cells. Reverse transcriptase qPCR (RT-qPCR) detected Dehalococcoides gene transcripts in the oxygen-amended, non-dechlorinating cultures, and biomarker transcription did not always correlate with dechlorination (in)activity. Enhanced molecular tools that complement existing protocols and provide quantitative information on the viability and activity of the Dehalococcoides population are desirable.


Subject(s)
Biomarkers/analysis , Chloroflexi/drug effects , Oxygen/pharmacology , Water Microbiology , Water Pollutants, Chemical/metabolism , Cell Survival/drug effects , Cell Survival/genetics , Chloroflexi/genetics , Chloroflexi/growth & development , Culture Media , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Oxygen/chemistry , Oxygen Consumption , RNA, Bacterial/analysis , RNA, Bacterial/genetics , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Trichloroethylene/chemistry , Trichloroethylene/metabolism , Vinyl Chloride/chemistry , Vinyl Chloride/metabolism
6.
J Bacteriol ; 189(2): 656-62, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17098906

ABSTRACT

Anaerobic cultures of Shewanella oneidensis MR-1 grown with nitrate as the sole electron acceptor exhibited sequential reduction of nitrate to nitrite and then to ammonium. Little dinitrogen and nitrous oxide were detected, and no growth occurred on nitrous oxide. A mutant with the napA gene encoding periplasmic nitrate reductase deleted could not respire or assimilate nitrate and did not express nitrate reductase activity, confirming that the NapA enzyme is the sole nitrate reductase. Hence, S. oneidensis MR-1 conducts respiratory nitrate ammonification, also termed dissimilatory nitrate reduction to ammonium, but not respiratory denitrification.


Subject(s)
Ammonia/metabolism , Nitrates/metabolism , Nitrites/metabolism , Shewanella/metabolism , Anaerobiosis , Genome, Bacterial , Mutation , Nitrate Reductase/genetics , Nitrate Reductase/metabolism , Oxidation-Reduction , Shewanella/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...