Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 14(5): e0120723, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37728338

ABSTRACT

IMPORTANCE: Before environmental opportunistic pathogens can infect humans, they must first successfully grow and compete with other microbes in nature, often via secreted antimicrobials. We previously discovered that the bacterium Legionella pneumophila, the causative agent of Legionnaires' disease, can compete with other microbes via a secreted molecule called HGA. Curiously, L. pneumophila strains that produce HGA is not wholly immune to its toxicity, making it a mystery how these bacteria can withstand the "friendly fire" of potentially self-targeting antimicrobials during inter-bacterial battles. Here, we identify several strategies that allow the high-density bacterial populations that secrete HGA to tolerate its effects. Our study clarifies how HGA works. It also points to some explanations of why it is difficult to disinfect L. pneumophila from the built environment and prevent disease outbreaks.


Subject(s)
Legionella pneumophila , Legionnaires' Disease , Humans , Legionella pneumophila/metabolism , Legionnaires' Disease/microbiology
2.
Viruses ; 14(10)2022 10 18.
Article in English | MEDLINE | ID: mdl-36298843

ABSTRACT

Immune cell state alterations rewire HIV-1 gene expression, thereby influencing viral latency and reactivation, but the mechanisms are still unfolding. Here, using a screen approach on CD4+ T cell models of HIV-1 latency, we revealed Small Molecule Reactivators (SMOREs) with unique chemistries altering the CD4+ T cell state and consequently promoting latent HIV-1 transcription and reactivation through an unprecedented mechanism of action. SMOREs triggered rapid oxidative stress and activated a redox-responsive program composed of cell-signaling kinases (MEK-ERK axis) and atypical transcription factor (AP-1 and HIF-1α) cooperativity. SMOREs induced an unusual AP-1 phosphorylation signature to promote AP-1/HIF-1α binding to the latent HIV-1 proviral genome for its activation. Consistently, latent HIV-1 reactivation was compromised with pharmacologic inhibition of oxidative stress sensing or of cell-signaling kinases, and transcription factor's loss of expression, thus functionally linking the host redox-responsive program to viral transcriptional rewiring. Notably, SMOREs induced the redox program in primary CD4+ T cells and reactivated latent HIV-1 in aviremic patient samples alone and in combination with known latency-reversing agents, thus providing physiological relevance. Our findings suggest that manipulation of redox-sensitive pathways could be exploited to alter the course of HIV-1 latency, thus rendering host cells responsive to help achieve a sterilizing cure.


Subject(s)
HIV Infections , HIV-1 , Transcription Factor AP-1 , Virus Activation , Virus Latency , Humans , CD4-Positive T-Lymphocytes , HIV Infections/genetics , HIV Infections/immunology , HIV Seropositivity/genetics , HIV Seropositivity/immunology , HIV-1/genetics , HIV-1/immunology , Jurkat Cells , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/immunology , Oxidation-Reduction , Transcription Factor AP-1/genetics , Transcription Factor AP-1/immunology , Virus Activation/genetics , Virus Activation/immunology , Virus Latency/genetics , Virus Latency/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...