Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339034

ABSTRACT

Acute lymphoblastic leukemia (ALL) represents around 25% of adult acute leukemias. Despite the increasing improvement in the survival rate of ALL patients during the last decade, the heterogeneous clinical and molecular features of this malignancy still represent a major challenge for treatment and achieving better outcomes. To identify aberrantly expressed genes in bone marrow (BM) samples from adults with ALL, transcriptomic analysis was performed using Affymetrix Human Transcriptome Array 2.0 (HTA 2.0). Differentially expressed genes (DEGs) (±2-fold change, p-value < 0.05, and FDR < 0.05) were detected using the Transcriptome Analysis Console. Gene Ontology (GO), Database for Annotation, Visualization, and Integrated Discovery (DAVID), and Ingenuity Pathway Analysis (IPA) were employed to identify gene function and define the enriched pathways of DEGs. The protein-protein interactions (PPIs) of DEGs were constructed. A total of 871 genes were differentially expressed, and DNTT, MYB, EBF1, SOX4, and ERG were the top five up-regulated genes. Meanwhile, the top five down-regulated genes were PTGS2, PPBP, ADGRE3, LUCAT1, and VCAN. An association between ERG, CDK6, and SOX4 expression levels and the probability of relapse and death was observed. Regulation of the immune system, immune response, cellular response to stimulus, as well as apoptosis signaling, inflammation mediated by chemokines and cytokines, and T cell activation were among the most altered biological processes and pathways, respectively. Transcriptome analysis of ALL in adults reveals a group of genes consistently associated with hematological malignancies and underscores their relevance in the development of ALL in adults.


Subject(s)
Gene Expression Profiling , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Transcriptome , Biomarkers , Recurrence , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Computational Biology , SOXC Transcription Factors
2.
Int J Mol Sci ; 24(6)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36982511

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common kind of pediatric cancer. Although the cure rates in ALL have significantly increased in developed countries, still 15-20% of patients relapse, with even higher rates in developing countries. The role of non-coding RNA genes as microRNAs (miRNAs) has gained interest from researchers in regard to improving our knowledge of the molecular mechanisms underlying ALL development, as well as identifying biomarkers with clinical relevance. Despite the wide heterogeneity reveled in miRNA studies in ALL, consistent findings give us confidence that miRNAs could be useful to discriminate between leukemia linages, immunophenotypes, molecular groups, high-risk-for-relapse groups, and poor/good responders to chemotherapy. For instance, miR-125b has been associated with prognosis and chemoresistance in ALL, miR-21 has an oncogenic role in lymphoid malignancies, and the miR-181 family can act either as a oncomiR or tumor suppressor in several hematological malignancies. However, few of these studies have explored the molecular interplay between miRNAs and their targeted genes. This review aims to state the different ways in which miRNAs could be involved in ALL and their clinical implications.


Subject(s)
MicroRNAs , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , MicroRNAs/genetics , Genes, Tumor Suppressor , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Hematopoiesis/genetics , Recurrence
3.
Genes (Basel) ; 10(11)2019 10 29.
Article in English | MEDLINE | ID: mdl-31671740

ABSTRACT

The complete mutational spectrum of dystrophinopathies and limb-girdle muscular dystrophy (LGMD) remains unknown in Mexican population. Seventy-two unrelated Mexican male patients (73% of pediatric age) with clinical suspicion of muscular dystrophy and no evidence of DMD gene deletion on multiplex polymerase chain reaction (mPCR) analysis were analyzed by multiplex ligation-dependent probe amplification (MLPA). Those with a normal result were subjected to Sanger sequencing or to next-generation sequencing for DMD plus 10 selected LGMD-related genes. We achieved a diagnostic genotype in 80.5% (n = 58/72) of patients with predominance of dystrophinopathy-linked genotypes (68%, n = 49/72), followed by autosomal recessive LGMD-related genotypes (types 2A-R1, 2C-R5, 2E-R4, 2D-R3 and 2I-R9; 12.5%, n = 9/72). MLPA showed 4.2% of false-negatives for DMD deletions assessed by mPCR. Among the small DMD variants, 96.5% (n = 28/29) corresponded to null-alleles, most of which (72%) were inherited through a carrier mother. The FKRP p.[Leu276Ile]; [Asn463Asp] genotype is reported for the first time in Mexican patients as being associated with dilated cardiomyopathy. Absence of dysferlinopathies could be related to the small sample size and/or the predominantly pediatric age of patients. The employed strategy seems to be an affordable diagnosis approach for Mexican muscular dystrophy male patients and their families.


Subject(s)
Dystrophin/genetics , Genetic Testing/standards , Muscular Dystrophy, Duchenne/genetics , Mutation , Adolescent , Adult , Child , Child, Preschool , False Negative Reactions , Genetic Testing/methods , Genotype , Humans , Male , Mexico , Multiplex Polymerase Chain Reaction/methods , Multiplex Polymerase Chain Reaction/standards , Muscular Dystrophy, Duchenne/pathology , Pentosyltransferases/genetics
4.
Int J Mol Sci ; 20(3)2019 Feb 09.
Article in English | MEDLINE | ID: mdl-30744139

ABSTRACT

Acute leukemia (AL) is the main type of cancer in children worldwide. Mortality by this disease is high in developing countries and its etiology remains unanswered. Evidences showing the role of the long non-coding RNAs (lncRNAs) in the pathophysiology of hematological malignancies have increased drastically in the last decade. In addition to the contribution of these lncRNAs in leukemogenesis, recent studies have suggested that lncRNAs could be used as biomarkers in the diagnosis, prognosis, and therapeutic response in leukemia patients. The focus of this review is to describe the functional classification, biogenesis, and the role of lncRNAs in leukemogenesis, to summarize the evidence about the lncRNAs which are playing a role in AL, and how these genes could be useful as potential therapeutic targets.


Subject(s)
Biomarkers, Tumor , Genetic Predisposition to Disease , Leukemia, Myeloid, Acute/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , RNA, Long Noncoding/genetics , Animals , Gene Expression Regulation, Leukemic , Genetic Association Studies , Hematopoiesis , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...