Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cell ; 187(10): 2557-2573.e18, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729111

ABSTRACT

Many of the world's most devastating crop diseases are caused by fungal pathogens that elaborate specialized infection structures to invade plant tissue. Here, we present a quantitative mass-spectrometry-based phosphoproteomic analysis of infection-related development by the rice blast fungus Magnaporthe oryzae, which threatens global food security. We mapped 8,005 phosphosites on 2,062 fungal proteins following germination on a hydrophobic surface, revealing major re-wiring of phosphorylation-based signaling cascades during appressorium development. Comparing phosphosite conservation across 41 fungal species reveals phosphorylation signatures specifically associated with biotrophic and hemibiotrophic fungal infection. We then used parallel reaction monitoring (PRM) to identify phosphoproteins regulated by the fungal Pmk1 MAPK that controls plant infection by M. oryzae. We define 32 substrates of Pmk1 and show that Pmk1-dependent phosphorylation of regulator Vts1 is required for rice blast disease. Defining the phosphorylation landscape of infection therefore identifies potential therapeutic interventions for the control of plant diseases.


Subject(s)
Fungal Proteins , Oryza , Plant Diseases , Phosphorylation , Oryza/microbiology , Oryza/metabolism , Plant Diseases/microbiology , Fungal Proteins/metabolism , Phosphoproteins/metabolism , Ascomycota/metabolism , Mitogen-Activated Protein Kinases/metabolism , Proteomics , Signal Transduction
2.
Proc Natl Acad Sci U S A ; 120(12): e2301358120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36913579

ABSTRACT

To cause rice blast disease, the filamentous fungus Magnaporthe oryzae secretes a battery of effector proteins into host plant tissue to facilitate infection. Effector-encoding genes are expressed only during plant infection and show very low expression during other developmental stages. How effector gene expression is regulated in such a precise manner during invasive growth by M. oryzae is not known. Here, we report a forward-genetic screen to identify regulators of effector gene expression, based on the selection of mutants that show constitutive effector gene expression. Using this simple screen, we identify Rgs1, a regulator of G-protein signaling (RGS) protein that is necessary for appressorium development, as a novel transcriptional regulator of effector gene expression, which acts prior to plant infection. We show that an N-terminal domain of Rgs1, possessing transactivation activity, is required for effector gene regulation and acts in an RGS-independent manner. Rgs1 controls the expression of at least 60 temporally coregulated effector genes, preventing their transcription during the prepenetration stage of development prior to plant infection. A regulator of appressorium morphogenesis is therefore also required for the orchestration of pathogen gene expression required for invasive growth by M. oryzae during plant infection.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Magnaporthe/genetics , Ascomycota/genetics , Signal Transduction , Gene Expression , Plant Diseases/genetics , Plant Diseases/microbiology , Oryza/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism
3.
Plant Cell ; 35(5): 1360-1385, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36808541

ABSTRACT

The rice blast fungus Magnaporthe oryzae causes a devastating disease that threatens global rice (Oryza sativa) production. Despite intense study, the biology of plant tissue invasion during blast disease remains poorly understood. Here we report a high-resolution transcriptional profiling study of the entire plant-associated development of the blast fungus. Our analysis revealed major temporal changes in fungal gene expression during plant infection. Pathogen gene expression could be classified into 10 modules of temporally co-expressed genes, providing evidence for the induction of pronounced shifts in primary and secondary metabolism, cell signaling, and transcriptional regulation. A set of 863 genes encoding secreted proteins are differentially expressed at specific stages of infection, and 546 genes named MEP (Magnaportheeffector protein) genes were predicted to encode effectors. Computational prediction of structurally related MEPs, including the MAX effector family, revealed their temporal co-regulation in the same co-expression modules. We characterized 32 MEP genes and demonstrate that Mep effectors are predominantly targeted to the cytoplasm of rice cells via the biotrophic interfacial complex and use a common unconventional secretory pathway. Taken together, our study reveals major changes in gene expression associated with blast disease and identifies a diverse repertoire of effectors critical for successful infection.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Magnaporthe/physiology , Ascomycota/metabolism , Signal Transduction , Cytoplasm/metabolism , Oryza/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism
4.
Proc Natl Acad Sci U S A ; 119(43): e2210559119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252011

ABSTRACT

Exocytosis plays an important role in plant-microbe interactions, in both pathogenesis and symbiosis. Exo70 proteins are integral components of the exocyst, an octameric complex that mediates tethering of vesicles to membranes in eukaryotes. Although plant Exo70s are known to be targeted by pathogen effectors, the underpinning molecular mechanisms and the impact of this interaction on infection are poorly understood. Here, we show the molecular basis of the association between the effector AVR-Pii of the blast fungus Maganaporthe oryzae and rice Exo70 alleles OsExo70F2 and OsExo70F3, which is sensed by the immune receptor pair Pii via an integrated RIN4/NOI domain. The crystal structure of AVR-Pii in complex with OsExo70F2 reveals that the effector binds to a conserved hydrophobic pocket in Exo70, defining an effector/target binding interface. Structure-guided and random mutagenesis validates the importance of AVR-Pii residues at the Exo70 binding interface to sustain protein association and disease resistance in rice when challenged with fungal strains expressing effector mutants. Furthermore, the structure of AVR-Pii defines a zinc-finger effector fold (ZiF) distinct from the MAX (Magnaporthe Avrs and ToxB-like) fold previously described for a majority of characterized M. oryzae effectors. Our data suggest that blast fungus ZiF effectors bind a conserved Exo70 interface to manipulate plant exocytosis and that these effectors are also baited by plant immune receptors, pointing to new opportunities for engineering disease resistance.


Subject(s)
Magnaporthe , Oryza , Disease Resistance , Fungal Proteins/metabolism , Host-Pathogen Interactions , Magnaporthe/genetics , Oryza/metabolism , Plant Diseases/microbiology , Plant Proteins/chemistry , Plants/metabolism , Zinc/metabolism
5.
J Cell Sci ; 135(14)2022 07 15.
Article in English | MEDLINE | ID: mdl-35856284

ABSTRACT

Many plant pathogenic fungi have the capacity to infect their plant hosts using specialised cells called appressoria. These structures act as a gateway between the fungus and host, allowing entry to internal tissues. Appressoria apply enormous physical force to rupture the plant surface, or use a battery of enzymes to digest the cuticle and plant cell wall. Appressoria also facilitate focal secretion of effectors at the point of plant infection to suppress plant immunity. These infection cells develop in response to the physical characteristics of the leaf surface, starvation stress and signals from the plant. Appressorium morphogenesis has been linked to septin-mediated reorganisation of F-actin and microtubule networks of the cytoskeleton, and remodelling of the fungal cell wall. In this Cell Science at a Glance and accompanying poster, we highlight recent advances in our understanding of the mechanisms of appressorium-mediated infection, and compare development on the leaf surface to the biology of invasive growth by pathogenic fungi. Finally, we outline key gaps in our current knowledge of appressorium cell biology.


Subject(s)
Oryza , Cell Wall/metabolism , Fungal Proteins/metabolism , Morphogenesis , Oryza/metabolism , Plant Diseases/microbiology , Plant Leaves/metabolism , Septins/metabolism
6.
Nat Microbiol ; 6(11): 1383-1397, 2021 11.
Article in English | MEDLINE | ID: mdl-34707224

ABSTRACT

Rice blast is a devastating disease caused by the fungal pathogen Magnaporthe oryzae that threatens rice production around the world. The fungus produces a specialized infection cell, called the appressorium, that enables penetration through the plant cell wall in response to surface signals from the rice leaf. The underlying biology of plant infection, including the regulation of appressorium formation, is not completely understood. Here we report the identification of a network of temporally coregulated transcription factors that act downstream of the Pmk1 mitogen-activated protein kinase pathway to regulate gene expression during appressorium-mediated plant infection. We show that this tiered regulatory mechanism involves Pmk1-dependent phosphorylation of the Hox7 homeobox transcription factor, which regulates genes associated with induction of major physiological changes required for appressorium development-including cell-cycle control, autophagic cell death, turgor generation and melanin biosynthesis-as well as controlling a additional set of virulence-associated transcription factor-encoding genes. Pmk1-dependent phosphorylation of Mst12 then regulates gene functions involved in septin-dependent cytoskeletal re-organization, polarized exocytosis and effector gene expression, which are necessary for plant tissue invasion. Identification of this regulatory cascade provides new potential targets for disease intervention.


Subject(s)
Ascomycota/enzymology , Fungal Proteins/metabolism , Mitogen-Activated Protein Kinases/metabolism , Oryza/microbiology , Plant Diseases/microbiology , Spores, Fungal/enzymology , Ascomycota/genetics , Ascomycota/growth & development , Ascomycota/pathogenicity , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Gene Regulatory Networks , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mitogen-Activated Protein Kinases/genetics , Phosphorylation , Spores, Fungal/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Virulence
8.
Methods Mol Biol ; 2356: 19-40, 2021.
Article in English | MEDLINE | ID: mdl-34236674

ABSTRACT

This introductory chapter describes the life cycle of Magnaporthe oryzae, the causal agent of rice blast disease. During plant infection, M. oryzae forms a specialized infection structure called an appressorium, which generates enormous turgor, applied as a mechanical force to breach the rice cuticle. Appressoria form in response to physical cues from the hydrophobic rice leaf cuticle and nutrient availability. The signaling pathways involved in perception of surface signals are described and the mechanism by which appressoria function is also introduced. Re-polarization of the appressorium requires a septin complex to organize a toroidal F-actin network at the base of the cell. Septin aggregation requires a turgor-dependent sensor kinase, Sln1, necessary for re-polarization of the appressorium and development of a rigid penetration hypha to rupture the leaf cuticle. Once inside the plant, the fungus undergoes secretion of a large set of effector proteins, many of which are directed into plant cells using a specific secretory pathway. Here they suppress plant immunity, but can also be perceived by rice immune receptors, triggering resistances. M. oryzae then manipulates pit field sites, containing plasmodesmata, to facilitate rapid spread from cell to cell in plant tissue, leading to disease symptom development.


Subject(s)
Ascomycota , Oryza , Biology , Fungal Proteins/metabolism , Magnaporthe/metabolism , Oryza/metabolism , Plant Diseases , Septins
9.
Fungal Genet Biol ; 154: 103562, 2021 09.
Article in English | MEDLINE | ID: mdl-33882359

ABSTRACT

Magnaporthe oryzae is the causal agent of rice blast disease, the most widespread and serious disease of cultivated rice. Live cell imaging and quantitative 4D image analysis have provided new insight into the mechanisms by which the fungus infects host cells and spreads rapidly in plant tissue. In this video review article, we apply live cell imaging approaches to understanding the cell and developmental biology of rice blast disease. To gain entry to host plants, M. oryzae develops a specialised infection structure called an appressorium, a unicellular dome-shaped cell which generates enormous turgor, translated into mechanical force to rupture the leaf cuticle. Appressorium development is induced by perception of the hydrophobic leaf surface and nutrient deprivation. Cargo-independent autophagy in the three-celled conidium, controlled by cell cycle regulation, is essential for appressorium morphogenesis. Appressorium maturation involves turgor generation and melanin pigment deposition in the appressorial cell wall. Once a threshold of turgor has been reached, this triggers re-polarisation which requires regulated generation of reactive oxygen species, to facilitate septin GTPase-dependent cytoskeletal re-organisation and re-polarisation of the appressorium to form a narrow, rigid penetration peg. Infection of host tissue requires a further morphogenetic transition to a pseudohyphal-type of growth within colonised rice cells. At the same time the fungus secretes an arsenal of effector proteins to suppress plant immunity. Many effectors are secreted into host cells directly, which involves a specific secretory pathway and a specialised structure called the biotrophic interfacial complex. Cell-to-cell spread of the fungus then requires development of a specialised structure, the transpressorium, that is used to traverse pit field sites, allowing the fungus to maintain host cell membrane integrity as new living plant cells are invaded. Thereafter, the fungus rapidly moves through plant tissue and host cells begin to die, as the fungus switches to necrotrophic growth and disease symptoms develop. These morphogenetic transitions are reviewed in the context of live cell imaging studies.


Subject(s)
Fungal Proteins/metabolism , Magnaporthe/growth & development , Mycoses/microbiology , Oryza/microbiology , Plant Cells/immunology , Plant Diseases/microbiology , Cell Wall/metabolism
10.
Nature ; 574(7778): 423-427, 2019 10.
Article in English | MEDLINE | ID: mdl-31597961

ABSTRACT

The blast fungus Magnaporthe oryzae gains entry to its host plant by means of a specialized pressure-generating infection cell called an appressorium, which physically ruptures the leaf cuticle1,2. Turgor is applied as an enormous invasive force by septin-mediated reorganization of the cytoskeleton and actin-dependent protrusion of a rigid penetration hypha3. However, the molecular mechanisms that regulate the generation of turgor pressure during appressorium-mediated infection of plants remain poorly understood. Here we show that a turgor-sensing histidine-aspartate kinase, Sln1, enables the appressorium to sense when a critical turgor threshold has been reached and thereby facilitates host penetration. We found that the Sln1 sensor localizes to the appressorium pore in a pressure-dependent manner, which is consistent with the predictions of a mathematical model for plant infection. A Δsln1 mutant generates excess intracellular appressorium turgor, produces hyper-melanized non-functional appressoria and does not organize the septins and polarity determinants that are required for leaf infection. Sln1 acts in parallel with the protein kinase C cell-integrity pathway as a regulator of cAMP-dependent signalling by protein kinase A. Pkc1 phosphorylates the NADPH oxidase regulator NoxR and, collectively, these signalling pathways modulate appressorium turgor and trigger the generation of invasive force to cause blast disease.


Subject(s)
Ascomycota/metabolism , Oryza/microbiology , Plant Diseases/microbiology , Plant Proteins/metabolism , Fungal Proteins/metabolism , Hyphae , NADPH Oxidases/metabolism , Oryza/physiology
11.
PLoS Biol ; 17(7): e3000373, 2019 07.
Article in English | MEDLINE | ID: mdl-31329577

ABSTRACT

Autophagy-related protein 8 (ATG8) is a highly conserved ubiquitin-like protein that modulates autophagy pathways by binding autophagic membranes and a number of proteins, including cargo receptors and core autophagy components. Throughout plant evolution, ATG8 has expanded from a single protein in algae to multiple isoforms in higher plants. However, the degree to which ATG8 isoforms have functionally specialized to bind distinct proteins remains unclear. Here, we describe a comprehensive protein-protein interaction resource, obtained using in planta immunoprecipitation (IP) followed by mass spectrometry (MS), to define the potato ATG8 interactome. We discovered that ATG8 isoforms bind distinct sets of plant proteins with varying degrees of overlap. This prompted us to define the biochemical basis of ATG8 specialization by comparing two potato ATG8 isoforms using both in vivo protein interaction assays and in vitro quantitative binding affinity analyses. These experiments revealed that the N-terminal ß-strand-and, in particular, a single amino acid polymorphism-underpins binding specificity to the substrate PexRD54 by shaping the hydrophobic pocket that accommodates this protein's ATG8-interacting motif (AIM). Additional proteomics experiments indicated that the N-terminal ß-strand shapes the broader ATG8 interactor profiles, defining interaction specificity with about 80 plant proteins. Our findings are consistent with the view that ATG8 isoforms comprise a layer of specificity in the regulation of selective autophagy pathways in plants.


Subject(s)
Autophagy-Related Protein 8 Family/metabolism , Autophagy , Plant Proteins/metabolism , Plants/metabolism , Autophagy-Related Protein 8 Family/chemistry , Autophagy-Related Protein 8 Family/genetics , Immunoprecipitation/methods , Mass Spectrometry/methods , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Plants/classification , Plants/genetics , Plants, Genetically Modified , Protein Binding , Protein Conformation, beta-Strand , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proteomics/methods , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Nicotiana/genetics , Nicotiana/metabolism
12.
BMC Biol ; 15(1): 20, 2017 03 20.
Article in English | MEDLINE | ID: mdl-28320402

ABSTRACT

BACKGROUND: Plants are exposed to diverse pathogens and pests, yet most plants are resistant to most plant pathogens. Non-host resistance describes the ability of all members of a plant species to successfully prevent colonization by any given member of a pathogen species. White blister rust caused by Albugo species can overcome non-host resistance and enable secondary infection and reproduction of usually non-virulent pathogens, including the potato late blight pathogen Phytophthora infestans on Arabidopsis thaliana. However, the molecular basis of host defense suppression in this complex plant-microbe interaction is unclear. Here, we investigate specific defense mechanisms in Arabidopsis that are suppressed by Albugo infection. RESULTS: Gene expression profiling revealed that two species of Albugo upregulate genes associated with tryptophan-derived antimicrobial metabolites in Arabidopsis. Albugo laibachii-infected tissue has altered levels of these metabolites, with lower indol-3-yl methylglucosinolate and higher camalexin accumulation than uninfected tissue. We investigated the contribution of these Albugo-imposed phenotypes to suppression of non-host resistance to P. infestans. Absence of tryptophan-derived antimicrobial compounds enables P. infestans colonization of Arabidopsis, although to a lesser extent than Albugo-infected tissue. A. laibachii also suppresses a subset of genes regulated by salicylic acid; however, salicylic acid plays only a minor role in non-host resistance to P. infestans. CONCLUSIONS: Albugo sp. alter tryptophan-derived metabolites and suppress elements of the responses to salicylic acid in Arabidopsis. Albugo sp. imposed alterations in tryptophan-derived metabolites may play a role in Arabidopsis non-host resistance to P. infestans. Understanding the basis of non-host resistance to pathogens such as P. infestans could assist in development of strategies to elevate food security.


Subject(s)
Anti-Infective Agents/metabolism , Arabidopsis/immunology , Arabidopsis/microbiology , Biosynthetic Pathways , Disease Resistance/immunology , Phytophthora infestans/physiology , Plant Diseases/microbiology , Tryptophan/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Biomass , Biosynthetic Pathways/drug effects , Biosynthetic Pathways/genetics , Brassica/microbiology , Disease Resistance/drug effects , Disease Susceptibility , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gene Ontology , Genes, Plant , Glucosinolates/metabolism , Indoles/metabolism , Metabolic Networks and Pathways/drug effects , Mutation/genetics , Plant Diseases/immunology , Plant Immunity/drug effects , Plant Leaves/drug effects , Plant Leaves/microbiology , Reproducibility of Results , Salicylic Acid/pharmacology , Signal Transduction/drug effects , Thiazoles/metabolism , Up-Regulation/drug effects
13.
New Phytol ; 212(4): 888-895, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27582271

ABSTRACT

888 I. 888 II. 889 III. 889 IV. 889 V. 891 VI. 891 VII. 891 VIII. 892 IX. 892 X. 893 XI. 893 893 References 893 SUMMARY: Elicitins are structurally conserved extracellular proteins in Phytophthora and Pythium oomycete pathogen species. They were first described in the late 1980s as abundant proteins in Phytophthora culture filtrates that have the capacity to elicit hypersensitive (HR) cell death and disease resistance in tobacco. Later, they became well-established as having features of microbe-associated molecular patterns (MAMPs) and to elicit defences in a variety of plant species. Research on elicitins culminated in the recent cloning of the elicitin response (ELR) cell surface receptor-like protein, from the wild potato Solanum microdontum, which mediates response to a broad range of elicitins. In this review, we provide an overview on elicitins and the plant responses they elicit. We summarize the state of the art by describing what we consider to be the nine most important features of elicitin biology.


Subject(s)
Oomycetes/metabolism , Proteins/metabolism , Amino Acid Sequence , Disease Resistance , Plant Diseases/microbiology , Plants/immunology , Plants/microbiology , Proteins/chemistry
14.
Plant Cell ; 28(9): 2326-2341, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27577790

ABSTRACT

Eukaryotes contain three types of lipid kinases that belong to the phosphatidylinositol 3-kinase (PI3K) family. In plants and Saccharomyces cerevisiae, only PI3K class III family members have been identified. These enzymes regulate the innate immune response, intracellular trafficking, autophagy, and senescence. Here, we report that RNAi-mediated downregulation of common bean (Phaseolus vulgaris) PI3K severely impaired symbiosis in composite P. vulgaris plants with endosymbionts such as Rhizobium tropici and Rhizophagus irregularis Downregulation of Pv-PI3K was associated with a marked decrease in root hair growth and curling. Additionally, infection thread growth, root-nodule number, and symbiosome formation in root nodule cells were severely affected. Interestingly, root colonization by AM fungi and the formation of arbuscules were also abolished in PI3K loss-of-function plants. Furthermore, the transcript accumulation of genes encoding proteins known to interact with PI3K to form protein complexes involved in autophagy was drastically reduced in these transgenic roots. RNAi-mediated downregulation of one of these genes, Beclin1/Atg6, resulted in a similar phenotype as observed for transgenic roots in which Pv-PI3K had been downregulated. Our findings show that an autophagy-related process is crucial for the mutualistic interactions of P. vulgaris with beneficial microorganisms.

15.
Elife ; 52016 Jan 14.
Article in English | MEDLINE | ID: mdl-26765567

ABSTRACT

Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses.


Subject(s)
Autophagy , Fungal Proteins/metabolism , Host-Pathogen Interactions , Phytophthora infestans/pathogenicity , Plant Diseases/microbiology , Plant Proteins/metabolism , Solanum tuberosum/microbiology , Plant Diseases/immunology , Protein Binding , Solanum tuberosum/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...