Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 284: 247-259, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25305666

ABSTRACT

Neonatal anoxia in rodents has been used to understand brain changes and cognitive dysfunction following asphyxia. This study investigated the time-course of cellular and subcellular changes and hippocampal cell death in a non-invasive model of anoxia in neonatal rats, using Terminal deoxynucleotidyl transferase-mediated dUTP Nick End Labeling (TUNEL) to reveal DNA fragmentation, Fluoro-Jade® B (FJB) to show degenerating neurons, cleaved caspase-3 immunohistochemistry (IHC) to detect cells undergoing apoptosis, and transmission electron microscopy (TEM) to reveal fine ultrastructural changes related to cell death. Anoxia was induced by exposing postnatal day 1 (P1) pups to a flow of 100% gaseous nitrogen for 25 min in a chamber maintained at 37 °C. Control rats were similarly exposed to this chamber but with air flow instead of nitrogen. Brain changes following anoxia were evaluated at postnatal days 2, 14, 21 and 60 (P2, P14, P21 and P60). In addition, spatial reference memory following anoxia and control treatments was evaluated in the Morris water maze, starting at P60. Compared to their respective controls, P2 anoxic rats exhibited (1) higher TUNEL labeling in cornus ammonis (CA) 1 and the dentate gyrus (DG), (2) higher FJB-positive cells in the CA2-3, and (3) somato-dendritic swelling, mitochondrial injury and chromatin condensation in irregular bodies, as well as other subcellular features indicating apoptosis, necrosis, autophagy and excitotoxicity in the CA1, CA2-3 and DG, as revealed by TEM. At P14, P21 and P60, both groups showed small numbers of TUNEL-positive and FJB-positive cells. Stereological analysis at P2, P14, P21 and P60 revealed a lack of significant differences in cleaved caspase-3 IHC between anoxic and control subjects. These results suggest that the type of hippocampal cell death following neonatal anoxia is likely independent of caspase-3 activation. Neonatal anoxia induced deficits in acquisition and performance of spatial reference memory in the Morris water maze task. Compared to control subjects, anoxic animals exhibited increased latencies and path lengths to reach the platform, as well as decreased searching specifically for the platform location. In contrast, no significant differences were observed for swimming speeds and frequency within the target quadrant. Together, these behavioral results indicate that the poorer performance by anoxic subjects is related to spatial memory deficits and not to sensory or motor deficits. Therefore, this model of neonatal anoxia in rats induces hippocampal changes that result in cell losses and impaired hippocampal function, and these changes are likely related to spatial memory deficits in adulthood.


Subject(s)
Cell Death/physiology , Hippocampus/physiopathology , Hypoxia/physiopathology , Spatial Memory/physiology , Animals , Animals, Newborn , Asphyxia Neonatorum , Caspase 3/metabolism , Disease Models, Animal , Hippocampus/pathology , Hypoxia/pathology , Male , Maze Learning/physiology , Rats, Wistar
2.
J Chem Neuroanat ; 57-58: 42-53, 2014 May.
Article in English | MEDLINE | ID: mdl-24727411

ABSTRACT

The suprachiasmatic nucleus (SCN), which is considered to be the master circadian clock in mammals, establishes biological rhythms of approximately 24 h that several organs exhibit. One aspect relevant to the study of the neurofunctional features of biological rhythmicity is the identification of communication pathways between the SCN and other brain areas. As a result, SCN efferent projections have been investigated in several species, including rodents and a few primates. The fibers originating from the two main intrinsic fiber subpopulations, one producing vasoactive intestinal peptide (VIP) and the other producing arginine vasopressin (AVP), exhibit morphological traits that distinguish them from fibers that originate from other brain areas. This distinction provides a parameter to study SCN efferent projections. In this study, we mapped VIP (VIP-ir) and AVP (AVP-ir) immunoreactive (ir) fibers and endings in the hypothalamus of the primate Sapajus apella via immunohistochemical and morphologic study. Regarding the fiber distribution pattern, AVP-ir and VIP-ir fibers were identified in regions of the tuberal hypothalamic area, retrochiasmatic area, lateral hypothalamic area, and anterior hypothalamic area. VIP-ir and AVP-ir fibers coexisted in several hypothalamic areas; however, AVP-ir fibers were predominant over VIP-ir fibers in the posterior hypothalamus and medial periventricular area. This distribution pattern and the receiving hypothalamic areas of the VIP-ir and AVP-ir fibers, which shared similar morphological features with those found in SCN, were similar to the patterns observed in diurnal and nocturnal animals. This finding supports the conservative nature of this feature among different species. Morphometric analysis of SCN intrinsic neurons indicated homogeneity in the size of VIP-ir neurons in the SCN ventral portion and heterogeneity in the size of two subpopulations of AVP-ir neurons in the SCN dorsal portion. The distribution of fibers and morphometric features of these neuronal populations are described and compared with those of other species in the present study.


Subject(s)
Arginine Vasopressin/metabolism , Efferent Pathways/anatomy & histology , Hypothalamus/anatomy & histology , Suprachiasmatic Nucleus/anatomy & histology , Vasoactive Intestinal Peptide/metabolism , Animals , Cebus , Efferent Pathways/metabolism , Efferent Pathways/ultrastructure , Hypothalamus/metabolism , Hypothalamus/ultrastructure , Immunohistochemistry , Male , Nerve Fibers/metabolism , Nerve Fibers/physiology , Nerve Fibers/ultrastructure , Preoptic Area/physiology , Preoptic Area/ultrastructure , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/ultrastructure
3.
Brain Res ; 1543: 65-72, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24161828

ABSTRACT

The suprachiasmatic nucleus (SCN), which is the main circadian biological clock in mammals, is composed of multiple cells that function individually as independent oscillators to express the self-sustained mRNA and protein rhythms of the so-called clock genes. Knowledge regarding the presence and localization of the proteins and neuroactive substances of the SCN are essential for understanding this nucleus and for its successful manipulation. Although there have been advances in the investigation of the intrinsic organization of the SCN in rodents, little information is available in diurnal species, especially in primates. This study, which explores the pattern of expression and localization of PER2 protein in the SCN of capuchin monkey, evaluates aspects of the circadian system that are common to both primates and rodents. Here, we showed that PER2 protein immunoreactivity is higher during the light phase. Additionally, the complex organization of cells that express vasopressin, vasoactive intestinal polypeptide, neuron-specific nuclear protein, calbindin and calretinin in the SCN, as demonstrated by their immunoreactivity, reveals an intricate network that may be related to the similarities and differences reported between rodents and primates in the literature.


Subject(s)
Gene Expression/physiology , Period Circadian Proteins/metabolism , Suprachiasmatic Nucleus/metabolism , Animals , Arginine Vasopressin/metabolism , Calbindin 2/metabolism , Calbindins/metabolism , Cebus , Circadian Rhythm/genetics , Male , Nerve Tissue Proteins/metabolism , Period Circadian Proteins/genetics , Photic Stimulation , RNA, Messenger/metabolism , Serotonin/metabolism , Vasoactive Intestinal Peptide/metabolism
4.
Eur J Histochem ; 56(3): e31, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23027347

ABSTRACT

The aim of this study was to identify immunoreactive neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) neurons in the autonomic and sensory ganglia, specifically neurons that innervate the rat temporomandibular joint (TMJ). A possible variation between the percentages of these neurons in acute and chronic phases of carrageenan-induced arthritis was examined. Retrograde neuronal tracing was combined with indirect immunofluorescence to identify NPY-immunoreactive (NPY-IR) and CGRP-immunoreactive (CGRP-IR) neurons that send nerve fibers to the normal and arthritic temporomandibular joint. In normal joints, NPY-IR neurons constitute 78±3%, 77±6% and 10±4% of double-labeled nucleated neuronal profile originated from the superior cervical, stellate and otic ganglia, respectively. These percentages in the sympathetic ganglia were significantly decreased in acute (58±2% for superior cervical ganglion and 58±8% for stellate ganglion) and chronic (60±2% for superior cervical ganglion and 59±15% for stellate ganglion) phases of arthritis, while in the otic ganglion these percentages were significantly increased to 19±5% and 13±3%, respectively. In the trigeminal ganglion, CGRP-IR neurons innervating the joint significantly increased from 31±3% in normal animals to 54±2% and 49±3% in the acute and chronic phases of arthritis, respectively. It can be concluded that NPY neurons that send nerve fibers to the rat temporomandibular joint are located mainly in the superior cervical, stellate and otic ganglia. Acute and chronic phases of carrageenan-induced arthritis lead to an increase in the percentage of NPY-IR parasympathetic and CGRP-IR sensory neurons and to a decrease in the percentage of NPY-IR sympathetic neurons related to TMJ innervation.


Subject(s)
Arthritis/chemically induced , Calcitonin Gene-Related Peptide/metabolism , Carrageenan , Neurons/metabolism , Neuropeptide Y/metabolism , Temporomandibular Joint/pathology , Animals , Immunohistochemistry , Male , Phenotype , Rats , Rats, Wistar , Temporomandibular Joint/innervation , Trigeminal Ganglion/metabolism
5.
J Chem Neuroanat ; 37(4): 207-13, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19481005

ABSTRACT

Circadian rhythms generated by the suprachiasmatic nucleus (SCN) are modulated by photic and non-photic stimuli. In rodents, direct photic stimuli reach the SCN mainly through the retinohypothalamic tract (RHT), whereas indirect photic stimuli are mainly conveyed by the geniculohypothalamic tract (GHT). In rodents, retinal cells form a pathway that reaches the intergeniculate leaflet (IGL) where they establish synapses with neurons that express neuropeptide Y (NPY), hence forming the GHT projecting to the SCN. In contrast to the RHT, which has been well described in primates, data regarding the presence or absence of the IGL and GHT in primates are contradictory. Some studies have suggested that an area of the pregeniculate nucleus (PGN) of primates might be homologous to the IGL of rodents, but additional anatomical and functional studies on primate species are necessary to confirm this hypothesis. Therefore, this study investigated the main histochemical characteristics of the PGN and the possible existence of the GHT in the SCN of the primate Cebus, comparing the distribution of NPY immunoreactivity, serotonin (5-HT) immunoreactivity and retinal terminal fibers in these two structures. The results show that a collection of cell bodies containing NPY and serotonergic immunoreactivity and retinal innervations are present within a zone that might be homologous to the IGL of rodents. The SCN also receives dense retinal innervations and we observed an atypical distribution of NPY- and 5-HT-immunoreactive fibers without regionalization in the ventral part of the nucleus as described for other species. These data may reflect morphological differences in the structures involved in the regulation of circadian rhythms among species and support the hypothesis that the GHT is present in some higher primates (diurnal animals).


Subject(s)
Cebus/metabolism , Circadian Rhythm/physiology , Geniculate Bodies/metabolism , Neuropeptide Y/metabolism , Retina/metabolism , Suprachiasmatic Nucleus/metabolism , Animals , Brain Mapping , Cebus/anatomy & histology , Geniculate Bodies/cytology , Immunohistochemistry , Light , Male , Neuropeptide Y/analysis , Presynaptic Terminals/metabolism , Presynaptic Terminals/ultrastructure , Retina/cytology , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , Rodentia/anatomy & histology , Serotonin/metabolism , Species Specificity , Suprachiasmatic Nucleus/cytology , Synaptic Transmission/physiology , Visual Pathways/cytology , Visual Pathways/metabolism
6.
J Anat ; 204(Pt 3): 175-90, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15032907

ABSTRACT

The architecture and musculotopic organization of the facial motor nucleus in the Cebus apella monkey (a New World primate) were investigated using histological techniques and a multiple labelling strategy, in which horseradish peroxidase-conjugated neuroanatomical tracers (CTB-HRP and WGA-HRP) and fluorescent tracers were injected into individual facial muscles. The facial motor nucleus was formed by multipolar motoneurons and had an ovoid shape, with its rostrocaudal axis measuring on average 1875 micro m. We divided the nucleus into four different subnuclei: medial, intermediate, dorsal and lateral. Retrograde labelling patterns revealed that individual muscles were innervated by longitudinal functional columns of motoneurons. The columns of the orbicularis oculi, zygomaticus, orbicularis oris, auricularis superior, buccinator and platysma muscles were located in the dorsal, intermediate, lateral, medial, lateral and intermediate subnuclei, respectively. However, the motoneuron columns of the levator labii superioris alaeque nasi muscle and frontalis muscle could not be associated with a specific subnucleus. The present results confirm previous studies regarding the musculotopic organization of the facial motor nucleus. However, we observed some particularities in terms of the relative size of each column in C. apella, which might be related to the functional and behavioral importance of each muscle in the particular context of this primate.


Subject(s)
Cebus/anatomy & histology , Facial Muscles/innervation , Motor Neurons/ultrastructure , Animals , Male , Neuroanatomy/methods , Staining and Labeling
7.
Cereb Cortex ; 10(3): 220-42, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10731218

ABSTRACT

The orbitofrontal cortex (OfC) is a heterogeneous prefrontal sector selectively connected with a wide constellation of other prefrontal, limbic, sensory and premotor areas. Among the limbic cortical connections, the ones with the hippocampus and parahippocampal cortex are particularly salient. Sensory cortices connected with the OfC include areas involved in olfactory, gustatory, somatosensory, auditory and visual processing. Subcortical structures with prominent OfC connections include the amygdala, numerous thalamic nuclei, the striatum, hypothalamus, periaqueductal gray matter, and biochemically specific cell groups in the basal forebrain and brainstem. Architectonic and connectional evidence supports parcellation of the OfC. The rostrally placed isocortical sector is mainly connected with isocortical areas, including sensory areas of the auditory, somatic and visual modalities, whereas the caudal non-isocortical sector is principally connected with non-isocortical areas, and, in the sensory domain, with olfactory and gustatory areas. The connections of the isocortical and non-isocortical orbital sectors with the amygdala, thalamus, striatum, hypothalamus and periaqueductal gray matter are also specific. The medial sector of the OfC is selectively connected with the hippocampus, posterior parahippocampal cortex, posterior cingulate and retrosplenial areas, and area prostriata, while the lateral orbitofrontal sector is the most heavily connected with sensory areas of the gustatory, somatic and visual modalities, with premotor regions, and with the amygdala.


Subject(s)
Frontal Lobe/cytology , Limbic System/cytology , Macaca nemestrina/anatomy & histology , Animals , Female , Male , Neural Pathways
SELECTION OF CITATIONS
SEARCH DETAIL
...