Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 224(2): 902-915, 2019 10.
Article in English | MEDLINE | ID: mdl-31257601

ABSTRACT

Agaricomycetes are fruiting body-forming fungi that produce some of the most efficient enzyme systems to degrade wood. Despite decades-long interest in their biology, the evolution and functional diversity of both wood-decay and fruiting body formation are incompletely known. We performed comparative genomic and transcriptomic analyses of wood-decay and fruiting body development in Auriculariopsis ampla and Schizophyllum commune (Schizophyllaceae), species with secondarily simplified morphologies, an enigmatic wood-decay strategy and weak pathogenicity to woody plants. The plant cell wall-degrading enzyme repertoires of Schizophyllaceae are transitional between those of white rot species and less efficient wood-degraders such as brown rot or mycorrhizal fungi. Rich repertoires of suberinase and tannase genes were found in both species, with tannases restricted to Agaricomycetes that preferentially colonize bark-covered wood, suggesting potential complementation of their weaker wood-decaying abilities and adaptations to wood colonization through the bark. Fruiting body transcriptomes revealed a high rate of divergence in developmental gene expression, but also several genes with conserved expression patterns, including novel transcription factors and small-secreted proteins, some of the latter which might represent fruiting body effectors. Taken together, our analyses highlighted novel aspects of wood-decay and fruiting body development in an important family of mushroom-forming fungi.


Subject(s)
Agaricales/genetics , Fruiting Bodies, Fungal/physiology , Genome, Fungal , Genomics , Wood/microbiology , Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Agaricales/physiology , Gene Expression Regulation, Fungal/physiology , Phylogeny , Species Specificity
2.
Synth Biol (Oxf) ; 4(1): ysz008, 2019.
Article in English | MEDLINE | ID: mdl-31008359

ABSTRACT

Spontaneous mutagenesis of synthetic genetic constructs by mobile genetic elements frequently results in the rapid loss of engineered functions. Previous efforts to minimize such mutations required the exceedingly time-consuming manipulation of bacterial chromosomes and the complete removal of insertional sequences (ISes). To this aim, we developed a single plasmid-based system (pCRIS) that applies CRISPR-interference to inhibit the transposition of bacterial ISes. pCRIS expresses multiple guide RNAs to direct inactivated Cas9 (dCas9) to simultaneously silence IS1, IS3, IS5 and IS150 at up to 38 chromosomal loci in Escherichia coli, in vivo. As a result, the transposition rate of all four targeted ISes dropped to negligible levels at both chromosomal and episomal targets. Most notably, pCRIS, while requiring only a single plasmid delivery performed within a single day, provided a reduction of IS-mobility comparable to that seen in genome-scale chromosome engineering projects. The fitness cost of multiple IS-knockdown, detectable in flask-and-shaker systems was readily outweighed by the less frequent inactivation of the transgene, as observed in green fluorescent protein (GFP)-overexpression experiments. In addition, global transcriptomics analysis revealed only minute alterations in the expression of untargeted genes. Finally, the transposition-silencing effect of pCRIS was easily transferable across multiple E. coli strains. The plasticity and robustness of our IS-silencing system make it a promising tool to stabilize bacterial genomes for synthetic biology and industrial biotechnology applications.

3.
Proc Natl Acad Sci U S A ; 116(15): 7409-7418, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30902897

ABSTRACT

The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms.


Subject(s)
Agaricales , Databases, Nucleic Acid , Fruiting Bodies, Fungal , Fungal Proteins , Genes, Fungal , Transcriptome/physiology , Agaricales/genetics , Agaricales/growth & development , Fruiting Bodies, Fungal/genetics , Fruiting Bodies, Fungal/growth & development , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Gene Expression Regulation, Fungal/physiology
4.
Am J Med Genet A ; 173(3): 784-789, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28211989

ABSTRACT

Timothy syndrome 1 (TS1) is a rare genetic disorder characterized by multisystem abnormalities including QT prolongation, congenital heart defects, facial dysmorphism, episodic hypoglycemia, and neurological symptoms. A morphological hallmark of TS1 is syndactyly, present in all cases. TS1 is caused by the canonical p.Gly406Arg mutation in the alternatively spliced exon 8A in the CACNA1C gene, encoding for the main cardiac L-type calcium channel. A variant case of TS1 is reported. The proband had intermittent fetal bradycardia with heart rate of 72 bpm. On the first day of life bradycardia due to 2:1 atrioventricular (AV) block and marked QTc prolongation of 600 ms was noted. On medical therapy with propranolol and mexiletine 1:1 AV conduction returned with QTc prolongation of 470-580 ms. The patient lacked other extracardiac manifestations, most importantly syndactyly, neurological complications or autism. On genetic analysis, the canonical TS1 causing mutation, p.Gly406Arg in exon 8A of the CACNA1C gene was detected. The CACNA1C p.Gly406Arg variant was not present in the parents, but was detected in different DNA samples of the index patient. Our case highlight further phenotypic variability in TS. Most importantly, it underlines that the lack of syndactyly does not exclude the presence of a TS1 genotype. © 2017 Wiley Periodicals, Inc.


Subject(s)
Autistic Disorder/diagnosis , Autistic Disorder/genetics , Calcium Channels, L-Type/genetics , Genetic Association Studies , Genotype , Long QT Syndrome/diagnosis , Long QT Syndrome/genetics , Phenotype , Syndactyly/diagnosis , Syndactyly/genetics , Alleles , Amino Acid Substitution , Biomarkers , DNA Mutational Analysis , Echocardiography , Electrocardiography , Exons , Humans , Infant, Newborn , Male , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...