Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1168547, 2023.
Article in English | MEDLINE | ID: mdl-37229104

ABSTRACT

Haplotype blocks might carry additional information compared to single SNPs and have therefore been suggested for use as independent variables in genomic prediction. Studies in different species resulted in more accurate predictions than with single SNPs in some traits but not in others. In addition, it remains unclear how the blocks should be built to obtain the greatest prediction accuracies. Our objective was to compare the results of genomic prediction with different types of haplotype blocks to prediction with single SNPs in 11 traits in winter wheat. We built haplotype blocks from marker data from 361 winter wheat lines based on linkage disequilibrium, fixed SNP numbers, fixed lengths in cM and with the R package HaploBlocker. We used these blocks together with data from single-year field trials in a cross-validation study for predictions with RR-BLUP, an alternative method (RMLA) that allows for heterogeneous marker variances, and GBLUP performed with the software GVCHAP. The greatest prediction accuracies for resistance scores for B. graminis, P. triticina, and F. graminearum were obtained with LD-based haplotype blocks while blocks with fixed marker numbers and fixed lengths in cM resulted in the greatest prediction accuracies for plant height. Prediction accuracies of haplotype blocks built with HaploBlocker were greater than those of the other methods for protein concentration and resistances scores for S. tritici, B. graminis, and P. striiformis. We hypothesize that the trait-dependence is caused by properties of the haplotype blocks that have overlapping and contrasting effects on the prediction accuracy. While they might be able to capture local epistatic effects and to detect ancestral relationships better than single SNPs, prediction accuracy might be reduced by unfavorable characteristics of the design matrices in the models that are due to their multi-allelic nature.

2.
Front Plant Sci ; 13: 735256, 2022.
Article in English | MEDLINE | ID: mdl-35528936

ABSTRACT

Genomic prediction has been established in breeding programs to predict the genotypic values of selection candidates without phenotypic data. First results in wheat showed that genomic predictions can also prove useful to select among material for which phenotypic data are available. In such a scenario, the selection candidates are evaluated with low intensity in the field. Genome-wide effects are estimated from the field data and are then used to predict the genotypic values of the selection candidates. The objectives of our simulation study were to investigate the correlations r(y, g) between genomic predictions y and genotypic values g and to compare these with the correlations r(p, g) between phenotypic values p and genotypic values g. We used data from a yield trial of 250 barley lines to estimate variance components and genome-wide effects. These parameters were used as basis for simulations. The simulations included multiple crossing schemes, population sizes, and varying sizes of the components of the masking variance. The genotypic values g of the selection candidates were obtained by genetic simulations, the phenotypic values p by simulating evaluation in the field, and the genomic predictions y by RR-BLUP effect estimation from the phenotypic values. The correlations r(y, g) were greater than the correlations r(p, g) for all investigated scenarios. We conclude that using genomic predictions for selection among candidates tested with low intensity in the field can proof useful for increasing the efficiency of barley breeding programs.

3.
Front Plant Sci ; 9: 1899, 2018.
Article in English | MEDLINE | ID: mdl-30627135

ABSTRACT

Background: The expected genetic variance is an important criterion for the selection of crossing partners which will produce superior combinations of genotypes in their progeny. The advent of molecular markers has opened up new vistas for obtaining precise predictors for the genetic variance of a cross, but fast prediction methods that allow plant breeders to select crossing partners based on already available data from their breeding programs without complicated calculations or simulation of breeding populations are still lacking. The main objective of the present study was to demonstrate the practical applicability of an analytical approach for the selection of superior cross combinations with experimental data from a barley breeding program. We used genome-wide marker effects to predict the yield means and genetic variances of 14 DH families resulting from crosses of four donor lines with five registered elite varieties with the genotypic information of the parental lines. For the validation of the predicted parameters, the analytical approach was extended by the masking variance as a major component of phenotypic variance. The predicted parameters were used to fit normal distribution curves of the phenotypic values and to conduct an Anderson-Darling goodness-of-fit test for the observed phenotypic data of the 14 DH families from the field trial. Results: There was no evidence that the observed phenotypic values deviated from the predicted phenotypic normal distributions in 13 out of 14 crosses. The correlations between the observed and the predicted means and the observed and predicted variances were r = 0.95 and r = 0.34, respectively. After removing two crosses with downward outliers in the phenotypic data, the correlation between the observed and predicted variances increased to r = 0.76. A ranking of the 14 crosses based on the sum of predicted mean and genetic variance identified the 50% best crosses from the field trial correctly. Conclusions: We conclude that the prediction accuracy of the presented approach is sufficiently high to identify superior crosses even with limited phenotypic data. We therefore expect that the analytical approach based on genome-wide marker effects is applicable in a wide range of breeding programs.

4.
Theor Appl Genet ; 130(8): 1669-1683, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28534096

ABSTRACT

KEY MESSAGE: Genomic prediction was evaluated in German winter barley breeding lines. In this material, prediction ability is strongly influenced by population structure and main determinant of prediction ability is the close genetic relatedness of the breeding material. To ensure breeding progress under changing environmental conditions the implementation and evaluation of new breeding methods is of crucial importance. Modern breeding approaches like genomic selection may significantly accelerate breeding progress. We assessed the potential of genomic prediction in a training population of 750 genotypes, consisting of multiple six-rowed winter barley (Hordeum vulgare L.) elite material families and old cultivars, which reflect the breeding history of barley in Germany. Crosses of parents selected from the training set were used to create a set of double-haploid families consisting of 750 genotypes. Those were used to confirm prediction ability estimates based on a cross-validation with the training set material using 11 different genomic prediction models. Population structure was inferred with dimensionality reduction methods like discriminant analysis of principle components and the influence of population structure on prediction ability was investigated. In addition to the size of the training set, marker density is of crucial importance for genomic prediction. We used genome-wide linkage disequilibrium and persistence of linkage phase as indicators to estimate that 11,203 evenly spaced markers are required to capture all QTL effects. Although a 9k SNP array does not contain a sufficient number of polymorphic markers for long-term genomic selection, we obtained fairly high prediction accuracies ranging from 0.31 to 0.71 for the traits earing, hectoliter weight, spikes per square meter, thousand kernel weight and yield and show that they result from the close genetic relatedness of the material. Our work contributes to designing long-term genetic prediction programs for barley breeding.


Subject(s)
Genome, Plant , Hordeum/growth & development , Hordeum/genetics , Plant Breeding , Crosses, Genetic , Genomics , Genotype , Linkage Disequilibrium , Models, Genetic , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...