Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34361652

ABSTRACT

Heme iron and nonheme dimanganese catalases protect biological systems against oxidative damage caused by hydrogen peroxide. Rubrerythrins are ferritine-like nonheme diiron proteins, which are structurally and mechanistically distinct from the heme-type catalase but similar to a dimanganese KatB enzyme. In order to gain more insight into the mechanism of this curious enzyme reaction, non-heme structural and functional models were carried out by the use of mononuclear [FeII(L1-4)(solvent)3](ClO4)2 (1-4) (L1 = 1,3-bis(2-pyridyl-imino)isoindoline, L2 = 1,3-bis(4'-methyl-2-pyridyl-imino)isoindoline, L3 = 1,3-bis(4'-Chloro-2-pyridyl-imino)isoindoline, L4 = 1,3-bis(5'-chloro-2-pyridyl-imino)isoindoline) complexes as catalysts, where the possible reactive intermediates, diiron-perroxo [FeIII2(µ-O)(µ-1,2-O2)(L1-L4)2(Solv)2]2+ (5-8) complexes are known and well-characterized. All the complexes displayed catalase-like activity, which provided clear evidence for the formation of diiron-peroxo species during the catalytic cycle. We also found that the fine-tuning of iron redox states is a critical issue, both the formation rate and the reactivity of the diiron-peroxo species showed linear correlation with the FeIII/FeII redox potentials. Their stability and reactivity towards H2O2 was also investigated and based on kinetic and mechanistic studies a plausible mechanism, including a rate-determining hydrogen atom transfer between the H2O2 and diiron-peroxo species, was proposed. The present results provide one of the first examples of a nonheme diiron-peroxo complex, which shows a catalase-like reaction.

2.
Dalton Trans ; 49(6): 1742-1746, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-31967142

ABSTRACT

The reactivity of the previously reported peroxo-adduct [FeIII2(µ-O)(µ-1,2-O2)(IndH)2(solv)2]2+ (1) (IndH = 1,3-bis(2-pyridyl-imino)isoindoline) has been investigated in nucleophilic (e.g., deformylation of alkyl and aryl alkyl aldehydes) and electrophilic (e.g. oxidation of phenols) stoichiometric reactions as biomimics of ribonucleotide reductase (RNR-R2) and aldehyde deformylating oxygenase (ADO) enzymes. Based on detailed kinetic and mechanistic studies, we have found further evidence for the ambiphilic behaviour of the peroxo intermediates proposed for diferric oxidoreductase enzymes.


Subject(s)
Aldehyde Dehydrogenase/chemistry , Biomimetic Materials/chemistry , Ferric Compounds/chemistry , Oxygen/chemistry , Ribonucleotide Reductases/chemistry , Aldehydes/chemistry , Kinetics , Oxidation-Reduction , Phenols/chemistry
3.
Chemistry ; 25(63): 14290-14294, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31448834

ABSTRACT

The reactivity of the previously reported peroxo adduct [FeIII 2 (µ-O2 )(MeBzim-Py)4 (CH3 CN)2 ]4+ (1) (MeBzim-Py=2-(2'-pyridyl)-N-methylbenzimidazole) towards aldehyde substrates including phenylacetaldehyde (PAA), hydrocinnamaldehyde (HCA), propionaldehyde (PA), 2-phenylpropionaldehyde (PPA), cyclohexanecarboxaldehyde (CCA), and para-substituted benzaldehydes (benzoyl chlorides) has been investigated. Complex 1 proved to be a nucleophilic oxidant in aldehyde deformylation reaction. These models, including detailed kinetic and mechanistic studies, may serve as the first biomimics of aldehyde deformylating oxygenase (ADO) enzymes.


Subject(s)
Aldehydes/chemistry , Biomimetic Materials/chemistry , Coordination Complexes/chemistry , Ferric Compounds/chemistry , Biomimetic Materials/metabolism , Coordination Complexes/metabolism , Kinetics , Oxygenases/chemistry , Oxygenases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...