Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stud Mycol ; 104: 1-85, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37351542

ABSTRACT

Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.

2.
Clin Microbiol Infect ; 14(4): 393-7, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18190575

ABSTRACT

The clinical importance of zygomycosis, an emerging and frequently fatal mycotic disease, has increased during recent years. This report describes an identification method based on PCR amplification and sequencing of the high-affinity iron permease 1 gene (FTR1). Primers and amplification protocols were established and tested for the identification of Rhizopus oryzae, Rhizopus microsporus var. rhizopodiformis, R. microsporus var. oligosporus, Rhizopus schipperae, Rhizopus niveus and Rhizopus stolonifer. Rhizomucor and Syncephalastrum could be identified at the genus level. PCR-restriction fragment length polymorphism analysis of the amplified gene fragment using AluI digestion distinguished three subgroups among the R. oryzae isolates.


Subject(s)
Fungal Proteins/genetics , Membrane Transport Proteins/genetics , Mucorales/classification , Mucormycosis/microbiology , Mycological Typing Techniques , Sequence Analysis, DNA , DNA Primers , DNA, Fungal/analysis , DNA, Fungal/isolation & purification , Deoxyribonucleases, Type II Site-Specific/metabolism , Fungal Proteins/chemistry , Humans , Iron/metabolism , Membrane Transport Proteins/chemistry , Molecular Sequence Data , Mucorales/enzymology , Mucorales/genetics , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length , Rhizomucor/classification , Rhizomucor/genetics , Rhizopus/classification , Rhizopus/genetics
3.
Acta Biol Hung ; 56(3-4): 345-57, 2005.
Article in English | MEDLINE | ID: mdl-16196209

ABSTRACT

Different types of molecular markers are available for use in evolutionary and population studies of microscopic fungi. These approaches have proved their merits and have been successfully applied to a wide range of fungal species belonging in the Ascomycetes and Basidiomycetes. Species in the class Zygomycetes have been rather neglected from this aspect. This review discusses the information available from investigations of the genotypic variability in this group of fungi.


Subject(s)
Fungi/genetics , Genetic Variation , Electrophoresis, Gel, Pulsed-Field , Genetic Markers , Genotype , Isoenzymes/analysis , Isoenzymes/genetics , Polymorphism, Restriction Fragment Length , Random Amplified Polymorphic DNA Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...