Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14403, 2024 06 22.
Article in English | MEDLINE | ID: mdl-38909126

ABSTRACT

Glucagon-like peptide-1 receptor (GLP-1R) agonists are now commonly used to treat type 2 diabetes and obesity. GLP-1R signaling in the spinal cord has been suggested to account for the mild tachycardia caused by GLP-1R agonists, and may also be involved in the therapeutic effects of these drugs. However, the neuroanatomy of the GLP-1/GLP-1R system in the spinal cord is still poorly understood. Here we applied in situ hybridization and immunohistochemistry to characterize this system, and its relation to cholinergic neurons. GLP-1R transcript and protein were expressed in neuronal cell bodies across the gray matter, in matching distribution patterns. GLP-1R-immunolabeling was also robust in dendrites and axons, especially in laminae II-III in the dorsal horn. Cerebrospinal fluid-contacting neurons expressed GLP-1R protein at exceedingly high levels. Only small subpopulations of cholinergic neurons expressed GLP-1R, including a subset of sympathetic preganglionic neurons at the rostral tip of the intermediolateral nucleus. GLP-1 axons innervated all regions where GLP-1R neurons were distributed, except laminae II-III. Scattered preproglucagon (Gcg) mRNA-expressing neurons were identified in the cervical and lumbar enlargements. The results will facilitate further studies on how GLP-1 regulates the sympathetic system and other autonomic and somatic functions via the spinal cord.


Subject(s)
Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Spinal Cord , Animals , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Male , Spinal Cord/metabolism , Mice , Glucagon-Like Peptide 1/metabolism , Cholinergic Neurons/metabolism , Proglucagon/metabolism , Proglucagon/genetics , Mice, Inbred C57BL , Axons/metabolism
2.
mBio ; 13(1): e0314421, 2021 02 22.
Article in English | MEDLINE | ID: mdl-35089096

ABSTRACT

Oral squamous cell carcinoma (OSCC) is associated with oral Candida albicans infection, although it is unclear whether the fungus promotes the genesis and progression of OSCC or whether cancer facilitates fungal growth. In this study, we investigated whether C. albicans can potentiate OSCC tumor development and progression. In vitro, the presence of live C. albicans, but not Candida parapsilosis, enhanced the progression of OSCC by stimulating the production of matrix metalloproteinases, oncometabolites, protumor signaling pathways, and overexpression of prognostic marker genes associated with metastatic events. C. albicans also upregulated oncogenes in nonmalignant cells. Using a newly established xenograft in vivo mouse model to investigate OSCC-C. albicans interactions, oral candidiasis enhanced the progression of OSCC through inflammation and induced the overexpression of metastatic genes and significant changes in markers of the epithelial-mesenchymal transition. Finally, using the 4-nitroquinoline 1-oxide (4NQO) murine model, we directly correlate these in vitro and short-term in vivo findings with the progression of oncogenesis over the long term. Taken together, these data indicate that C. albicans upregulates oncogenes, potentiates a premalignant phenotype, and is involved in early and late stages of malignant promotion and progression of oral cancer. IMPORTANCE Oral squamous cell carcinoma (OSCC) is a serious health issue worldwide that accounts for 2% to 4% of all cancer cases. Previous studies have revealed a higher yeast carriage and diversity in oral cancer patients than in healthy individuals. Furthermore, fungal colonization in the oral cavity bearing OSCC is higher on the neoplastic epithelial surface than on adjacent healthy surfaces, indicating a positive association between oral yeast carriage and epithelial carcinoma. In addition to this, there is strong evidence supporting the idea that Candida contributes to carcinogenesis events in the oral cavity. Here, we show that an increase in Candida albicans burden promotes an oncogenic phenotype in the oral cavity.


Subject(s)
Candidiasis, Oral , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Mice , Animals , Candida albicans/genetics , Squamous Cell Carcinoma of Head and Neck , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Carcinogenesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...