Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 39(12)2023 12 01.
Article in English | MEDLINE | ID: mdl-38048610

ABSTRACT

SUMMARY: As demand for the automation of biological assays has increased over recent years, the range of measurement types implemented by multiwell plate readers has broadened and the list of published software packages that caters to their analysis has grown. However, most plate readers export data in esoteric formats with little or no metadata, while most analytical software packages are built to work with tidy data accompanied by associated metadata. 'Parser' functions are therefore required to prepare raw data for analysis. Such functions are instrument- and data type-specific, and to date, no generic tool exists that can parse data from multiple data types or multiple plate readers, despite the potential for such a tool to speed up access to analysed data and remove an important barrier for less confident coders. We have developed the interactive web application, Parsley, to bridge this gap. Unlike conventional programmatic parser functions, Parsley makes few assumptions about exported data, instead employing user inputs to identify and extract data from data files. In doing so, it is designed to enable any user to parse plate reader data and can handle a wide variety of instruments (10+) and data types (53+). Parsley is freely available via a web interface, enabling access to its unique plate reader data parsing functionality, without the need to install software or write code. AVAILABILITY AND IMPLEMENTATION: The Parsley web application can be accessed at: https://gbstan.shinyapps.io/parsleyapp/. The source code is available at: https://github.com/ec363/parsleyapp and is archived on Zenodo: https://zenodo.org/records/10011752.


Subject(s)
Mobile Applications , Automation , Information Storage and Retrieval , Metadata
2.
Nat Commun ; 13(1): 6600, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36329019

ABSTRACT

This paper presents a generalisable method for the calibration of fluorescence readings on microplate readers, in order to convert arbitrary fluorescence units into absolute units. FPCountR relies on the generation of bespoke fluorescent protein (FP) calibrants, assays to determine protein concentration and activity, and a corresponding analytical workflow. We systematically characterise the assay protocols for accuracy, sensitivity and simplicity, and describe an 'ECmax' assay that outperforms the others and even enables accurate calibration without requiring the purification of FPs. To obtain cellular protein concentrations, we consider methods for the conversion of optical density to either cell counts or alternatively to cell volumes, as well as examining how cells can interfere with protein counting via fluorescence quenching, which we quantify and correct for the first time. Calibration across different instruments, disparate filter sets and mismatched gains is demonstrated to yield equivalent results. It also reveals that mCherry absorption at 600 nm does not confound cell density measurements unless expressed to over 100,000 proteins per cell. FPCountR is presented as pair of open access tools (protocol and R package) to enable the community to use this method, and ultimately to facilitate the quantitative characterisation of synthetic microbial circuits.


Subject(s)
Proteins , Fluorescence , Calibration
3.
Chembiochem ; 21(19): 2844-2853, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32413179

ABSTRACT

Directed evolution has been remarkably successful at expanding the chemical and functional boundaries of biology. That progress is heavily dependent on the robustness and flexibility of the available selection platforms, given the significant cost to (re)develop a given platform to target a new desired function. Bacterial cell display has a significant track record as a viable strategy for the engineering of mesophilic enzymes, as enzyme activity can be probed directly and free from interference from the cellular milieu, but its adoption has lagged behind other display-based methods. Herein, we report the development of SNAP as a quantitative reporter for bacterial cell display, which enables fast troubleshooting and the systematic development of the display-based selection platform, thus improving its robustness. In addition, we demonstrate that even weak interactions between displayed proteins and nucleic acids can be harnessed for the specific labelling of bacterial cells, allowing functional characterisation of DNA binding proteins and enzymes, thus making it a highly flexible platform for these biochemical functions. Together, this establishes bacterial display as a robust and flexible platform, ideally suited for the systematic engineering of ligands and enzymes needed for XNA molecular biology.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Bacteria/metabolism , Bioengineering , Alkyl and Aryl Transferases/genetics , Bacteria/cytology , Bacteria/genetics , Humans , Ligands , Nucleic Acids/metabolism , Xenobiotics/metabolism
5.
Chem Sci ; 9(24): 5383-5388, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-30079176

ABSTRACT

Artificial metalloenzymes (ArMs hereafter) combine attractive features of both homogeneous catalysts and enzymes and offer the potential to implement new-to-nature reactions in living organisms. Herein we present an E. coli surface display platform for streptavidin (Sav hereafter) relying on an Lpp-OmpA anchor. The system was used for the high throughput screening of a bioorthogonal CpRu-based artificial deallylase (ADAse) that uncages an allylcarbamate-protected aminocoumarin 1. Two rounds of directed evolution afforded the double mutant S112M-K121A that displayed a 36-fold increase in surface activity vs. cellular background and a 5.7-fold increased in vitro activity compared to the wild type enzyme. The crystal structure of the best ADAse reveals the importance of mutation S112M to stabilize the cofactor conformation inside the protein.

6.
Essays Biochem ; 60(4): 393-410, 2016 11 30.
Article in English | MEDLINE | ID: mdl-27903826

ABSTRACT

Biocontainment comprises any strategy applied to ensure that harmful organisms are confined to controlled laboratory conditions and not allowed to escape into the environment. Genetically engineered microorganisms (GEMs), regardless of the nature of the modification and how it was established, have potential human or ecological impact if accidentally leaked or voluntarily released into a natural setting. Although all evidence to date is that GEMs are unable to compete in the environment, the power of synthetic biology to rewrite life requires a pre-emptive strategy to tackle possible unknown risks. Physical containment barriers have proven effective but a number of strategies have been developed to further strengthen biocontainment. Research on complex genetic circuits, lethal genes, alternative nucleic acids, genome recoding and synthetic auxotrophies aim to design more effective routes towards biocontainment. Here, we describe recent advances in synthetic biology that contribute to the ongoing efforts to develop new and improved genetic, semantic, metabolic and mechanistic plans for the containment of GEMs.


Subject(s)
Containment of Biohazards/methods , Synthetic Biology/methods , Genetic Engineering , Genome , Plasmids/metabolism , Risk
7.
Biochem Soc Trans ; 44(4): 1165-75, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27528765

ABSTRACT

Life on Earth is incredibly diverse. Yet, underneath that diversity, there are a number of constants and highly conserved processes: all life is based on DNA and RNA; the genetic code is universal; biology is limited to a small subset of potential chemistries. A vast amount of knowledge has been accrued through describing and characterizing enzymes, biological processes and organisms. Nevertheless, much remains to be understood about the natural world. One of the goals in Synthetic Biology is to recapitulate biological complexity from simple systems made from biological molecules-gaining a deeper understanding of life in the process. Directed evolution is a powerful tool in Synthetic Biology, able to bypass gaps in knowledge and capable of engineering even the most highly conserved biological processes. It encompasses a range of methodologies to create variation in a population and to select individual variants with the desired function-be it a ligand, enzyme, pathway or even whole organisms. Here, we present some of the basic frameworks that underpin all evolution platforms and review some of the recent contributions from directed evolution to synthetic biology, in particular methods that have been used to engineer the Central Dogma and the genetic code.


Subject(s)
Directed Molecular Evolution , Genetic Code/genetics , Nucleic Acids/genetics , Synthetic Biology/methods , Animals , Evolution, Molecular , Genetic Variation , Humans , Origin of Life , Selection, Genetic
8.
J Virol ; 88(18): 10364-76, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24991001

ABSTRACT

UNLABELLED: Translational readthrough--suppression of termination at a stop codon--is exploited in the replication cycles of several viruses and represents a potential target for antiviral intervention. In the gammaretroviruses, typified by Moloney murine leukemia virus (MuLV), gag and pol are in the same reading frame, separated by a UAG stop codon, and termination codon readthrough is required for expression of the viral Gag-Pol fusion protein. Here, we investigated the effect on MuLV replication of modulating readthrough efficiency. We began by manipulating the readthrough signal in the context of an infectious viral clone to generate a series of MuLV variants in which readthrough was stimulated or reduced. In carefully controlled infectivity assays, it was found that reducing the MuLV readthrough efficiency only 4-fold led to a marked defect and that a 10-fold reduction essentially abolished replication. However, up to an ∼ 8.5-fold stimulation of readthrough (up to 60% readthrough) was well tolerated by the virus. These high levels of readthrough were achieved using a two-plasmid system, with Gag and Gag-Pol expressed from separate infectious clones. We also modulated readthrough by silencing expression of eukaryotic release factors 1 and 3 (eRF1 and eRF3) or by introducing aminoglycosides into the cells. The data obtained indicate that gammaretroviruses tolerate a substantial excess of viral Gag-Pol synthesis but are very sensitive to a reduction in levels of this polyprotein. Thus, as is also the case for ribosomal frameshifting, antiviral therapies targeting readthrough with inhibitory agents are likely to be the most beneficial. IMPORTANCE: Many pathogenic RNA viruses and retroviruses use ribosomal frameshifting or stop codon readthrough to regulate expression of their replicase enzymes. These translational "recoding" processes are potential targets for antiviral intervention, but we have only a limited understanding of the consequences to virus replication of modulating the efficiency of recoding, particularly for those viruses employing readthrough. In this paper, we describe the first systematic analysis of the effect of increasing or decreasing readthrough efficiency on virus replication using the gammaretrovirus MuLV as a model system. We find unexpectedly that MuLV replication is only slightly inhibited by substantial increases in readthrough frequency, but as with other viruses that use recoding strategies, replication is quite sensitive to even modest reductions. These studies provide insights into both the readthrough process and MuLV replication and have implications for the selection of antivirals against gammaretroviruses.


Subject(s)
Codon, Terminator/genetics , Leukemia Virus, Murine/genetics , Protein Biosynthesis , Retroviridae Infections/veterinary , Virus Replication , Animals , Fusion Proteins, gag-pol/genetics , Fusion Proteins, gag-pol/metabolism , Gene Expression Regulation, Viral , Leukemia Virus, Murine/physiology , Mice , Retroviridae Infections/virology , Rodent Diseases
SELECTION OF CITATIONS
SEARCH DETAIL
...