Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4690, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824132

ABSTRACT

Accurate identification of genetic alterations in tumors, such as Fibroblast Growth Factor Receptor, is crucial for treating with targeted therapies; however, molecular testing can delay patient care due to the time and tissue required. Successful development, validation, and deployment of an AI-based, biomarker-detection algorithm could reduce screening cost and accelerate patient recruitment. Here, we develop a deep-learning algorithm using >3000 H&E-stained whole slide images from patients with advanced urothelial cancers, optimized for high sensitivity to avoid ruling out trial-eligible patients. The algorithm is validated on a dataset of 350 patients, achieving an area under the curve of 0.75, specificity of 31.8% at 88.7% sensitivity, and projected 28.7% reduction in molecular testing. We successfully deploy the system in a non-interventional study comprising 89 global study clinical sites and demonstrate its potential to prioritize/deprioritize molecular testing resources and provide substantial cost savings in the drug development and clinical settings.


Subject(s)
Algorithms , Deep Learning , Humans , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Clinical Trials as Topic , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/diagnosis , Male , Female , Patient Selection , Urologic Neoplasms/pathology , Urologic Neoplasms/diagnosis , Urologic Neoplasms/genetics
2.
J Pathol Inform ; 14: 100337, 2023.
Article in English | MEDLINE | ID: mdl-37860714

ABSTRACT

A system for analysis of histopathology data within a pharmaceutical R&D environment has been developed with the intention of enabling interdisciplinary collaboration. State-of-the-art AI tools have been deployed as easy-to-use self-service modules within an open-source whole slide image viewing platform, so that non-data scientist users (e.g., clinicians) can utilize and evaluate pre-trained algorithms and retrieve quantitative results. The outputs of analysis are automatically cataloged in the database to track data provenance and can be viewed interactively on the slide as annotations or heatmaps. Commonly used models for analysis of whole slide images including segmentation, extraction of hand-engineered features for segmented regions, and slide-level classification using multi-instance learning are included and new models can be added as needed. The source code that supports running inference with these models internally is backed up by a robust CI/CD pipeline to ensure model versioning, robust testing, and seamless deployment of the latest models. Examples of the use of this system in a pharmaceutical development workflow include glomeruli segmentation, enumeration of podocyte count from WT-1 immuno-histochemistry, measurement of beta-1 integrin target engagement from immunofluorescence, digital glomerular phenotyping from periodic acid-Schiff histology, PD-L1 score prediction using multi-instance learning, and the deployment of the open-source Segment Anything model to speed up annotation.

SELECTION OF CITATIONS
SEARCH DETAIL
...