Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Biotechnol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004405

ABSTRACT

We have created a novel synthetic biology expression system allowing easy refactoring of biosynthetic gene clusters (BGCs) as monocistronic transcriptional units. The system is based on a set of plasmids containing a strong kasOp* promoter, RBS and terminators. It allows the cloning of biosynthetic genes into transcriptional units kasOp*-gene(s)-terminator flanked by several rare restriction cloning sites that can be sequentially combined into the artificial BGC in three compatible Streptomyces integration vectors. They allow a simultaneous integration of these BGCs at three different attB sites in the Streptomyces chromosome. The system was validated with biosynthetic genes from two known BGCs for aromatic polyketides landomycin and mithramycin.

2.
Res Microbiol ; 175(5-6): 104201, 2024.
Article in English | MEDLINE | ID: mdl-38522628

ABSTRACT

Unlike Bacillus subtilis, Streptomyces coelicolor contains nine SigB homologues of the stress-response sigma factor SigB. By using a two-plasmid system, we previously identified promoters recognized by these sigma factors. Almost all promoters were recognized by several SigB homologues. However, no specific sequences of these promoters were found. One of these promoters, ssgBp, was selected to examine this cross-recognition in the native host. It controls the expression of the sporulation-specific gene ssgB. Using a luciferase reporter, the activity of this promoter in S. coelicolor and nine mutant strains lacking individual sigB homologous genes showed that sgBp is dependent on three sigma factors, SigH, SigN, and SigI. To determine which nucleotides in the-10 region are responsible for the selection of a specific SigB homologue, promoters mutated at the last three nucleotide positions were tested in the two-plasmid system. Some mutant promoters were specifically recognized by a distinct set of SigB homologues. Analysis of these mutant promoters in the native host showed the role of these nucleotides. A conserved nucleotide A at position 5 was essential for promoter activity, and two variable nucleotides at positions 4 and 6 were responsible for the partial selectivity of promoter recognition by SigB homologues.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , Sigma Factor , Spores, Bacterial , Streptomyces coelicolor , Transcription, Genetic , Streptomyces coelicolor/genetics , Streptomyces coelicolor/metabolism , Sigma Factor/genetics , Sigma Factor/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Spores, Bacterial/genetics , Spores, Bacterial/metabolism , Plasmids/genetics , Base Sequence
3.
AMB Express ; 13(1): 83, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37552435

ABSTRACT

Streptomyces lavendulae subsp. lavendulae CCM 3239 (formerly Streptomyces aureofaciens CCM 3239) contains a type II polyketide synthase (PKS) biosynthetic gene cluster (BGC) aur1 whose genes were highly similar to angucycline BGCs. However, its product auricin is structurally different from all known angucyclines. It contains a spiroketal pyranonaphthoquinone aglycone similar to griseusins and is modified with D-forosamine. Here, we describe the characterization of the initial steps in auricin biosynthesis using a synthetic-biology-based approach. We have created a plasmid system based on the strong kasOp* promoter, RBS and phage PhiBT1-based integration vector, where each gene in the artificial operon can be easily replaced by another gene using unique restriction sites surrounding each gene in the operon. The system was validated with the initial landomycin biosynthetic genes lanABCFDLE, leading to the production of rabelomycin after its integration into Streptomyces coelicolor M1146. However, the aur1DEFCGHA homologous genes from the auricin aur1 BGC failed to produce rabelomycin in this system. The cause of this failure was inactive aur1DE genes encoding ketosynthases α and ß (KSα, KSß). Their replacement with homologous aur2AB genes from the adjacent aur2 BGC resulted in rabelomycin production that was even higher after the insertion of two genes from the aur1 BGC, aur1L encoding 4-phosphopantetheinyl transferase (PPTase) and aur1M encoding malonyl-CoA:ACP transacylase (MCAT), suggesting that Aur1L PPTase is essential for the activation of the acyl carrier protein Aur1F. These results suggest an interesting communication of two BGCs, aur1 and aur2, in the biosynthesis of the initial structure of auricin aglycone.

4.
Appl Microbiol Biotechnol ; 106(21): 7285-7299, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36173451

ABSTRACT

The bacteria of the genus Streptomyces are important producers of a large number of biologically active natural products. Examination of their genomes has revealed great biosynthetic potential for the production of new products, but many of them are silent under laboratory conditions. One of the promising avenues for harnessing this biosynthetic potential is the refactoring and heterologous expression of relevant biosynthetic gene clusters (BGCs) in suitable optimized chassis strains. Although several Streptomyces strains have been used for this purpose, the efficacy is relatively low, and some BGCs have not been expressed. In this study, we optimized our long-term genetically studied Streptomyces lavendulae subsp. lavendulae CCM 3239 strain as a potential host for heterologous expression along with its stable large linear plasmid pSA3239 as a vector system. Two reporter genes, mCherry and gusA under the control of ermEp* promoter, were successfully integrated into pSA3239. The activity of GUS reporter was four-fold higher in pSA3239 than in a single site in S. lavendulae subsp. lavendulae CCM 3239 chromosome, consistent with a higher copy number of pSA3239 (4 copies per chromosome). In addition, the two Att/Int systems (based on PhiC31 and pSAM2) were able to integrate into the corresponding individual attB sites in the chromosome. The BGC for actinorhodin was successfully integrated into pSA3239. However, the resulting strain produced very low amounts of actinorhodin. Its level increased dramatically after integration of the actII-ORF4 gene for the positive regulator under the control of the kasOp* promoter into this strain using the PhiC31 phage integration system. KEY POINTS: • New Streptomyces chassis for heterologous expression of genes and BGCs • Optimized strategy for insertion of heterologous genes into linear plasmid pSA3239 • Efficient heterologous production of actinorhodin after induction of its regulator.


Subject(s)
Actinomycetales , Biological Products , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Multigene Family , Actinomycetales/genetics , Biological Products/metabolism
5.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269603

ABSTRACT

We previously identified the aur1 biosynthetic gene cluster (BGC) in Streptomyceslavendulae subsp. lavendulae CCM 3239 (formerly Streptomycesaureofaciens CCM 3239), which is responsible for the production of the unusual angucycline-like antibiotic auricin. Auricin is produced in a narrow interval of the growth phase after entering the stationary phase, after which it is degraded due to its instability at the high pH values reached after the production phase. The complex regulation of auricin BGC is responsible for this specific production by several regulators, including the key activator Aur1P, which belongs to the family of atypical response regulators. The aur1P gene forms an operon with the downstream aur1O gene, which encodes an unknown protein without any conserved domain. Homologous aur1O genes have been found in several BGCs, which are mainly responsible for the production of angucycline antibiotics. Deletion of the aur1O gene led to a dramatic reduction in auricin production. Transcription from the previously characterized Aur1P-dependent biosynthetic aur1Ap promoter was similarly reduced in the S. lavendulaeaur1O mutant strain. The aur1O-specific coactivation of the aur1Ap promoter was demonstrated in a heterologous system using a luciferase reporter gene. In addition, the interaction between Aur1O and Aur1P has been demonstrated by a bacterial two-hybrid system. These results suggest that Aur1O is a specific coactivator of this key auricin-specific positive regulator Aur1P. Bioinformatics analysis of Aur1O and its homologues in other BGCs revealed that they represent a new family of transcriptional coactivators involved in the regulation of secondary metabolite biosynthesis. However, they are divided into two distinct sequence-specific subclasses, each of which is likely to interact with a different family of positive regulators.


Subject(s)
Streptomyces aureofaciens , Anti-Bacterial Agents/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Multigene Family , Promoter Regions, Genetic , Streptomyces aureofaciens/genetics , Streptomyces aureofaciens/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Res Microbiol ; 172(6): 103870, 2021.
Article in English | MEDLINE | ID: mdl-34487842

ABSTRACT

We previously reported the complete genome of Streptomyces lavendulae subsp. lavendulae CCM 3239, containing the linear chromosome and the large linear plasmid pSA3239. Although the chromosome exhibited replication features characteristic for the archetypal end-patching replication, it lacked the tap/tpg gene pair for two proteins essential for this process. However, this archetypal tpgSa-tapSa operon is present in pSA3239. Complete genomic sequence of the S. lavendulae Del-LP strain lacking this plasmid revealed the circularization of its chromosome with a large deletion of both arms. These results suggest an essential role of pSA3239-encoded TapSa/TpgSa in the end-patching replication of the chromosome.


Subject(s)
Bacterial Proteins/metabolism , Chromosomes, Bacterial/physiology , Plasmids , Streptomyces/genetics , Bacterial Proteins/genetics , DNA Replication , DNA, Bacterial/genetics , Genome, Bacterial , Operon
7.
Appl Microbiol Biotechnol ; 105(5): 2123-2137, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33564923

ABSTRACT

The bacteria of the genus Streptomyces are among the most important producers of biologically active secondary metabolites. Moreover, recent genomic sequence data have shown their enormous genetic potential for new natural products, although many new biosynthetic gene clusters (BGCs) are silent. Therefore, efficient and stable genome modification techniques are needed to activate their production or to manipulate their biosynthesis towards increased production or improved properties. We have recently developed an efficient markerless genome modification system for streptomycetes based on positive blue/white selection of double crossovers using the bpsA gene from indigoidine biosynthesis, which has been successfully applied for markerless deletions of genes and BGCs. In the present study, we optimized this system for markerless insertion of large BGCs. In a pilot test experiment, we successfully inserted a part of the landomycin BGC (lanFABCDL) under the control of the ermEp* promoter in place of the actinorhodin BGC (act) of Streptomyces lividans TK24 and RedStrep 1.3. The resulting strains correctly produced UWM6 and rabelomycin in twice the yield compared to S. lividans strains with the same construct inserted using the PhiBT1 phage-based integration vector system. Moreover, the system was more stable. Subsequently, using the same strategy, we effectively inserted the entire BGC for mithramycin (MTM) in place of the calcium-dependent antibiotic BGC (cda) of S. lividans RedStrep 1.3 without antibiotic-resistant markers. The resulting strain produced similar levels of MTM when compared to the previously described S. lividans RedStrep 1.3 strain with the VWB phage-based integration plasmid pMTMF. The system was also more stable. KEY POINTS: • Optimized genome editing system for markerless insertion of BGCs into Streptomyces genomes • Efficient heterologous production of MTM in the stable engineered S. lividans strain.


Subject(s)
Streptomyces , Chromosomes , Multigene Family , Plasmids/genetics , Streptomyces/genetics , Streptomyces lividans/genetics
8.
Appl Microbiol Biotechnol ; 104(18): 7701-7721, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32686008

ABSTRACT

The aureolic acid-type polyketide mithramycin (MTM) has a remarkable cytotoxicity against a variety of human tumors and has been used for the treatment of several types of cancer, including chronic and acute myeloid leukemia, testicular carcinoma, hypercalcemia, and Paget's disease. However, its clinical use is quite limited due to its toxicity. Recently, interest in MTM has been renewed after its identification as a top candidate for the inhibition of the aberrant fusion transcription factor EWS-FLI1, associated with malignant transformation and progression of Ewing sarcoma tumor family. The mechanism of MTM inhibition involves its reversible non-intercalative interaction with GC-rich DNA regions. As a result of this binding, MTM blocks binding of transcription factors (such as Sp1) to their GC-rich promoters and inhibits transcription of several proto-oncogenes and thus suppresses various types of cancer. Knowledge of the biosynthesis of MTM and its gene cluster has enabled genetic modifications of the gene cluster and combinatorial biosynthesis to produce new modified MTM molecules ("mithralogues") with improved efficacy and lower toxicity, which has also renewed interest in the clinical development of MTM. However, production yields of MTM and its analogues are low in the natural production strains. Recent developments in genetic engineering approaches have made it possible to increase MTM production through more rational strategies based on genetic manipulations and heterologous expression in optimized chassis. Recent construction of various genetically modified strains of Streptomyces lividans has shown their use for efficient heterologous production of various biologically active secondary metabolites including MTM. KEY POINTS: • Discovery a novel bifunctional glycosyl hydrolase from uncultured microorganism. • Heterologous production of MTM in engineered S. lividans strains is efficient.


Subject(s)
Polyketides , Sarcoma, Ewing , Anti-Bacterial Agents/therapeutic use , Antibiotics, Antineoplastic , Humans , Plicamycin , Sarcoma, Ewing/drug therapy
9.
Antibiotics (Basel) ; 8(3)2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31349574

ABSTRACT

We previously identified the aur1 gene cluster in Streptomyces lavendulae subsp. lavendulae CCM 3239 (formerly Streptomyces aureofaciens CCM 3239), which is responsible for the production of the angucycline-like antibiotic auricin (1). Preliminary characterization of 1 revealed that it possesses an aminodeoxyhexose d-forosamine and is active against Gram-positive bacteria. Here we determined the structure of 1, finding that it possesses intriguing structural features, which distinguish it from other known angucyclines. In addition to d-forosamine, compound 1 also contains a unique, highly oxygenated aglycone similar to those of spiroketal pyranonaphthoquinones griseusins. Like several other griseusins, 1 also undergoes methanolysis and displays modest cytotoxicity against several human tumor cell lines. Moreover, the central core of the aur1 cluster is highly similar to the partial gris gene cluster responsible for the biosynthesis of griseusin A and B in both the nature of the encoded proteins and the gene organization.

10.
Appl Microbiol Biotechnol ; 103(14): 5463-5482, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31119353

ABSTRACT

The bacteria of the genus Streptomyces are the most valuable source of natural products of industrial and medical importance. A recent explosion of Streptomyces genome sequence data has revealed the enormous genetic potential of new biologically active compounds, although many of them are silent under laboratory conditions. Efficient and stable manipulation of the genome is necessary to induce their production. Comprehensive studies in the past have led to a large and versatile collection of molecular biology tools for gene manipulation of Streptomyces, including various replicative plasmids. However, biotechnological applications of these bacteria require stable genome alterations/mutations. To accomplish such stable genome editing, two major strategies for streptomycetes have been developed: (1) integration into the chromosome through Att/Int site-specific integration systems based on Streptomyces actinophages (ΦC31, ΦBT1, VWB, TG1, SV1, R4, ΦJoe, µ1/6) or pSAM2 integrative plasmid; (2) integration by homologous recombination using suicidal non-replicating vectors. The present review is an attempt to provide a comprehensive summary of both approaches for stable genomic engineering and to outline recent advances in these strategies, such as CRISPR/Cas9, which have successfully manipulated Streptomyces strains to improve their biotechnological properties and increase production of natural or new gene-manipulated biologically active compounds.


Subject(s)
Genome, Bacterial , Microorganisms, Genetically-Modified , Mutation , Streptomyces/genetics , Bacteriophages/genetics , Biotechnology , CRISPR-Cas Systems , Gene Editing , Genetic Vectors , Plasmids/genetics , Recombination, Genetic , Streptomyces/virology
11.
Genome Announc ; 6(9)2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29496832

ABSTRACT

Streptomyces lavendulae subsp. lavendulae CCM 3239 produces the angucycline antibiotic auricin and was thought to be the type strain of Streptomyces aureofaciens We report the complete genome sequence of this strain, which consists of a linear chromosome and the linear plasmid pSA3239, and demonstrate it to be S. lavendulae subsp. lavendulae.

SELECTION OF CITATIONS
SEARCH DETAIL
...