Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39062767

ABSTRACT

Brassinosteroids (BRs) are an important group of polyhydroxylated naturally occurring steroidal phytohormones found in the plant kingdom in extremely low amounts. Due to the low concentrations in which these compounds are found, much effort has been dedicated to synthesizing these compounds or their structural analogs using natural and abundant sterols. In this work, we report the synthesis of new brassinosteroid analogs obtained from hyodeoxycholic acid, with a 3,6 dioxo function, 24-Nor-22(S)-hydroxy side chain and p-substituted benzoate function at C-23. The plant growth activities of these compounds were evaluated by two different bioassays: rice lamina inclination test (RLIT) and BSI. The results show that BRs' analog with p-Br (compound 41f) in the aromatic ring was the most active at 1 × 10-8 M in the RLIT and BSI assays. These results are discussed in terms of the chemical structure and nature of benzoate substituents at the para position. Electron-withdrawing and size effects seems to be the most important factor in determining activities in the RLIT assay. These results could be useful to propose a new structural requirement for bioactivity in brassinosteroid analogs.


Subject(s)
Benzoates , Brassinosteroids , Oryza , Brassinosteroids/chemistry , Brassinosteroids/chemical synthesis , Oryza/growth & development , Oryza/drug effects , Oryza/metabolism , Benzoates/chemistry , Benzoates/pharmacology , Benzoates/chemical synthesis , Plant Growth Regulators/chemical synthesis , Plant Growth Regulators/chemistry , Plant Growth Regulators/pharmacology , Plant Development/drug effects , Deoxycholic Acid
2.
Molecules ; 29(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930909

ABSTRACT

In this work, a group of ten sesquiterpene drimanes, including polygodial (1), isopolygodial (2), and drimenol (3) obtained from the bark of Drimys winteri F. and seven synthetic derivatives, were tested in vitro against a unique panel of bacteria, fungi, and oomycetes with standardized procedures against bacterial strains K. pneumoniae, S. tiphy, E. avium, and E. coli. The minimum inhibitory concentrations and bactericidal activities were evaluated using standardized protocols. Polygodial (1) was the most active compound, with MBC 8 µg/mL and MIC 16 µg/mL in E. avium; MBC 16 µg/mL and MIC 32 µg/mL in K. pneumoniae; MBC 64 µg/mL and MIC 64 µg/mL in S. typhi; and MBC 8 µg/mL and MIC 16 µg/mL and MBC 32 µg/mL and MIC 64 µg/mL in E. coli, respectively. The observed high potency could be attributed to the presence of an aldehyde group at the C8-C9 position. The antifungal activity of 1 from different microbial isolates has been evaluated. The results show that polygodial affects the growth of normal isolates and against filamentous fungi and oomycetes with MFC values ranging from 8 to 64 µg/mL. Sesquiterpene drimanes isolated from this plant have shown interesting antimicrobial properties.


Subject(s)
Anti-Infective Agents , Drimys , Microbial Sensitivity Tests , Sesquiterpenes , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Drimys/chemistry , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Escherichia coli/drug effects , Fungi/drug effects , Bacteria/drug effects
3.
Molecules ; 28(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37175368

ABSTRACT

In this study, we aimed to evaluate two sets of sesquiterpene-aryl derivatives linked by an ester bond, their cytotoxic activities, and their capacity to activate caspases 3/7 and inhibit human topoisomerase I (TOP1). A total of 13 compounds were synthesized from the natural sesquiterpene (-)-drimenol and their cytotoxic activity was evaluated in vitro against three cancer cell lines: PC-3 (prostate cancer), HT-29 (colon cancer), MCF-7 (breast cancer), and an immortalized non-tumoral cell line (MCF-10). From the results, it was observed that 6a was the most promising compound due to its cytotoxic effect on three cancer cell lines and its selectivity, 6a was 100-fold more selective than 5-FU in MCF-7 and 20-fold in PC-3. It was observed that 6a also induced apoptosis by caspases 3/7 activity using a Capsase-Glo-3/7 assay kit and inhibited TOP1. A possible binding mode of 6a in a complex with TOP1-DNA was proposed by docking and molecular dynamics studies. In addition, 6a was predicted to have a good pharmacokinetic profile for oral administration. Therefore, through this study, it was demonstrated that the drimane scaffold should be considered in the search of new antitumoral agents.


Subject(s)
Antineoplastic Agents , Sesquiterpenes , Humans , Cell Line, Tumor , DNA Topoisomerases, Type I/metabolism , Esters/pharmacology , Antineoplastic Agents/chemistry , Sesquiterpenes/pharmacology , Apoptosis , Caspases/metabolism , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Cell Proliferation , Structure-Activity Relationship , Molecular Structure
4.
Int J Mol Sci ; 25(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38203590

ABSTRACT

The synthesis and biological evaluation of brassinosteroids (BRs) analogs with chemical modification in the side alkyl chain is a matter of current interest. Recently, a series of BR analogs with phenyl or benzoate groups in the alkyl chain have been reported. The effect of substitution in the aromatic ring on the biological activities of these new analogs has been evaluated, and the results suggest that the bioactivity is enhanced by substitution with an F atom. In this context, we have synthesized, characterized, and evaluated a series of new analogs of 23,24-bisnorcholenic type in which the benzoate group at the C-22 position is substituted with an F atom at "ortho or para" positions. Plant growth-promoting activities were evaluated by using the rice lamina inclination test and bean second internode biotest. The results obtained with both bioassays indicate that the compound with an F atom in the para position on the aromatic ring is the most active BR analog and in some cases is even more active than brassinolide. The docking study confirmed that compounds with an F atom adopt an orientation similar to that predicted for brassinolide, and the F atom in the "para" position generates an extra hydrogen bond in the predicted binding position.


Subject(s)
Benzoates , Brassinosteroids , Brassinosteroids/pharmacology , Molecular Docking Simulation , Axons , Biological Assay
5.
Pharmaceutics ; 14(6)2022 May 25.
Article in English | MEDLINE | ID: mdl-35745694

ABSTRACT

To develop novel chemotherapeutic alternatives for the treatment of Chagas disease, in this study, a set of new amino naphthoquinone derivatives were synthesised and evaluated in vitro on the epimastigote and trypomastigote forms of Trypanosoma cruzi strains (NINOA and INC-5) and on J774 murine macrophages. The design of the new naphthoquinone derivatives considered the incorporation of nitrogenous fragments with different substitution patterns present in compounds with activity on T. cruzi, and, thus, 19 compounds were synthesised in a simple manner. Compounds 2e and 7j showed the lowest IC50 values (0.43 µM against both strains for 2e and 0.19 µM and 0.92 µM for 7j). Likewise, 7j was more potent than the reference drug, benznidazole, and was more selective on epimastigotes. To postulate a possible mechanism of action, molecular docking studies were performed on T. cruzi trypanothione reductase (TcTR), specifically at a site in the dimer interface, which is a binding site for this type of naphthoquinone. Interestingly, 7j was one of the compounds that showed the best interaction profile on the enzyme; therefore, 7j was evaluated on TR, which behaved as a non-competitive inhibitor. Finally, 7j was predicted to have a good pharmacokinetic profile for oral administration. Thus, the naphthoquinone nucleus should be considered in the search for new trypanocidal agents based on our hit 7j.

6.
Arch Pharm (Weinheim) ; 355(7): e2200042, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35435270

ABSTRACT

Neuroblastoma is one of the most frequent types of cancer found in infants, and traditional chemotherapy has limited efficacy against this pathology. Thus, the development of new compounds with higher activity and selectivity than traditional drugs is a current challenge in medicinal chemistry research. In this study, we report the synthesis of 21 chalcones with antiproliferative activity and selectivity against the neuroblastoma cell line SH-SY5Y. Then, we developed three-dimensional quantitative structure-activity relationship models (comparative molecular field analysis and comparative molecular similarity index analysis) with high-quality statistical values (q2 > 0.7; r2 > 0.8; r2 pred > 0.7), using IC50 and selectivity index (SI) data as dependent variables. With the information derived from these theoretical models, we designed and synthesized 16 new molecules to prove their consistency, finding good antiproliferative activity against SH-SY5Y cells on these derivatives, with three of them showing higher SI than the referential drugs 5-fluorouracil and cisplatin, displaying also a proapoptotic effect comparable to these drugs, as proven by measuring their effects on executor caspases 3/7 activity induction, Bcl-2/Bax messenger RNA levels alteration, and DNA fragmentation promotion.


Subject(s)
Antineoplastic Agents , Chalcone , Chalcones , Neuroblastoma , Apoptosis , Cell Line, Tumor , Cell Proliferation , Chalcone/pharmacology , Chalcones/pharmacology , Humans , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Quantitative Structure-Activity Relationship
7.
Molecules ; 26(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34770960

ABSTRACT

In this study, the essential oil (EO) from Laurelia sempervirens was analyzed by GC/MS and safrole (1) was identified as the major metabolite 1, was subjected to direct reactions on the oxygenated groups in the aromatic ring and in the side chain, and eight compounds (4 to 12) were obtained by the process. EO and compounds 4-12 were subjected to biological assays on 24 strains of the genus Saprolegnia, specifically of the species 12 S. parasitica and 12 S. australis. EO showed a significant effect against Saprolegnia strains. Compound 6 presents the highest activity against two resistant strains, with minimum inhibitory concentration (MIC) and minimum oomyceticidal concentration (MOC) values of 25 to 100 and 75 to 125 µg/mL, respectively. The results show that compound 6 exhibited superior activities compared to the commercial controls bronopol and azoxystrobin used to combat these pathogens.


Subject(s)
Antiparasitic Agents/pharmacology , Magnoliopsida/chemistry , Oils, Volatile/pharmacology , Safrole/pharmacology , Saprolegnia/drug effects , Animals , Antiparasitic Agents/chemistry , Antiparasitic Agents/isolation & purification , Fishes , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Parasitic Sensitivity Tests , Safrole/chemistry
8.
Molecules ; 23(6)2018 06 12.
Article in English | MEDLINE | ID: mdl-29895756

ABSTRACT

We describe the syntheses of nine new angucyclinone 6-aza-analogues, achieved through a hetero Diels-Alder reaction between the shikimic acid derivative-azadiene 13, with different naphthoquinones. The cytotoxic activity of the new synthesized compounds and five angucyclinones, previously reported, was evaluated in vitro against three cancer cell lines: PC-3 (prostate cancer), HT-29 (colon cancer), MCF-7 (breast cancer), and one non-tumoral cell line, human colon epithelial cells (CCD841 CoN). Our results showed that most 6-azadiene derivatives exhibited significant cytotoxic activities, which was demonstrated by their IC50 values (less than 10 µM), especially for the most sensitive cells, PC-3 and HT-29. From a chemical point of view, depending on the protected group of ring A and the pattern of substitution on ring D, cytotoxicity elicited these compounds, in terms of their potency and selectivity. Therefore, according to these chemical features, the most promising agents for every cancer cell line were 7a, 17, and 19c for PC-3 cells; 7a, 17, and 20 for HT-29 cells, and 19a for MCF-7 cells.


Subject(s)
Anthraquinones/chemical synthesis , Antineoplastic Agents/chemical synthesis , Shikimic Acid/chemistry , Anthraquinones/chemistry , Anthraquinones/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cycloaddition Reaction , Drug Screening Assays, Antitumor , HT29 Cells , Humans , MCF-7 Cells , Molecular Structure , Structure-Activity Relationship
9.
Pest Manag Sci ; 74(7): 1623-1629, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29316155

ABSTRACT

BACKGROUND: The antifeedant activity of 18 sesquiterpenoids of the drimane family (polygodial, drimenol and derivatives) was investigated. RESULTS: Polygodial, drimanic and nordrimanic derivatives were found to exert antifeedant effects against two insect species, Spodoptera frugiperda and Epilachna paenulata, which are pests of agronomic interest, indicating that they have potential as biopesticide agents. Among the 18 compounds tested, the epoxynordrimane compound (11) and isonordrimenone (4) showed the highest activity [50% effective concentration (EC50 ) = 23.28 and 25.63 nmol cm-2 , respectively, against S. frugiperda, and 50.50 and 59.00 nmol/cm2 , respectively, against E. paenulata]. CONCLUSION: The results suggest that drimanic compounds have potential as new agents against S. frugiperda and E. paenulata. A quantitative structure-activity relationship (QSAR) analysis of the whole series, supported by electronic studies, suggested that drimanic compounds have structural features necessary for increasing antifeedant activity, namely a C-9 carbonyl group and an epoxide at C-8 and C-9. © 2018 Society of Chemical Industry.


Subject(s)
Coleoptera , Insect Control , Insecticides , Quantitative Structure-Activity Relationship , Sesquiterpenes , Spodoptera , Terpenes , Animals , Coleoptera/growth & development , Larva/growth & development , Lethal Dose 50 , Polycyclic Sesquiterpenes , Spodoptera/growth & development
10.
Bioorg Med Chem ; 22(17): 4609-20, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25127463

ABSTRACT

A series of new 2-aminonaphthoquinones and related compounds were synthesized and evaluated in vitro as trypanocidal and cytotoxic agents. Some tested compounds inhibited epimastigote growth and trypomastigote viability. Several compounds showed similar or higher activity and selectivity as compared with current trypanocidal drug, nifurtimox. Compound 4l exhibit higher selectivity than nifurtimox against Trypanosoma cruzi in comparison with Vero cells. Some of the synthesized quinones were tested against cancer cells and normal fibroblasts, showing that certain chemical modifications on the naphthoquinone moiety induce and excellent increase the selectivity index of the cytotoxicity (4g and 10). The results presented here show that the anti-T. cruzi activity of 2-aminonaphthoquinones derivatives can be improved by the replacement of the benzene ring by a pyridine moiety. Interestingly, the presence of a chlorine atom at C-3 and a highly lipophilic alkyl group or aromatic ring are newly observed elements that should lead to the discovery of more selective cytotoxic and trypanocidal compounds.


Subject(s)
Aniline Compounds/pharmacology , Fibroblasts/drug effects , Naphthoquinones/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Aniline Compounds/chemical synthesis , Aniline Compounds/chemistry , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Humans , MCF-7 Cells , Molecular Structure , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanocidal Agents/toxicity , Vero Cells
11.
Chem Commun (Camb) ; (17): 1970-1, 2004 Sep 07.
Article in English | MEDLINE | ID: mdl-15340626

ABSTRACT

Treatment of a homoallylic alcohol with lead(IV) acetate in refluxing benzene for 2 hours results in an oxidative cleavage to give a carbonyl compound and an allylic acetate with high yield.

12.
Bioorg Med Chem ; 11(12): 2489-97, 2003 Jun 12.
Article in English | MEDLINE | ID: mdl-12757716

ABSTRACT

The Diels-Alder reaction between two polygodial-derived dienes and simple quinones to yield substituted naphtho- and anthraquinones, is described. The in vitro trypanocide activity for the series was determined. Two of the new compounds showed an activity ten and two times higher, respectively, than nifurtimox and benznidazole, the medicines of choice for the treatment of the acute Chagas' disease.


Subject(s)
Quinones/chemical synthesis , Quinones/pharmacology , Sesquiterpenes/chemical synthesis , Sesquiterpenes/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Animals , Inhibitory Concentration 50 , Nifurtimox/pharmacology , Nitroimidazoles/pharmacology , Polycyclic Compounds/chemical synthesis , Polycyclic Compounds/pharmacology , Polycyclic Sesquiterpenes , Quinones/chemistry , Sesquiterpenes/chemistry , Trypanocidal Agents/chemistry , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...