Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 146(3): 1040-1052, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36717986

ABSTRACT

Humans accumulate with age the dark-brown pigment neuromelanin inside specific neuronal groups. Neurons with the highest neuromelanin levels are particularly susceptible to degeneration in Parkinson's disease, especially dopaminergic neurons of the substantia nigra, the loss of which leads to characteristic motor Parkinson's disease symptoms. In contrast to humans, neuromelanin does not appear spontaneously in most animals, including rodents, and Parkinson's disease is an exclusively human condition. Using humanized neuromelanin-producing rodents, we recently found that neuromelanin can trigger Parkinson's disease pathology when accumulated above a specific pathogenic threshold. Here, by taking advantage of this newly developed animal model, we assessed whether the intracellular build-up of neuromelanin that occurs with age can be slowed down in vivo to prevent or attenuate Parkinson's disease. Because neuromelanin derives from the oxidation of free cytosolic dopamine, we enhanced dopamine vesicular encapsulation in the substantia nigra of neuromelanin-producing rats by viral vector-mediated overexpression of vesicular monoamine transporter 2 (VMAT2). This strategy reduced the formation of potentially toxic oxidized dopamine species that can convert into neuromelanin and maintained intracellular neuromelanin levels below their pathogenic threshold. Decreased neuromelanin production was associated with an attenuation of Lewy body-like inclusion formation and a long-term preservation of dopamine homeostasis, nigrostriatal neuronal integrity and motor function in these animals. Our results demonstrate the feasibility and therapeutic potential of modulating age-dependent intracellular neuromelanin production in vivo, thereby opening an unexplored path for the treatment of Parkinson's disease and, in a broader sense, brain ageing.


Subject(s)
Parkinson Disease , Humans , Rats , Animals , Parkinson Disease/pathology , Dopamine , Melanins , Substantia Nigra/pathology , Dopaminergic Neurons/pathology
2.
ACS Chem Neurosci ; 11(17): 2679-2687, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32786306

ABSTRACT

Dopamine is a key neurotransmitter in the pathophysiology of various neurological disorders such as addiction or Parkinson's disease. Disturbances in its metabolism could lead to dopamine accumulation in the cytoplasm and an increased production of o-quinones and their derivatives, which have neurotoxic potential and act as precursors in neuromelanin synthesis. Thus, quantification of the dopaminergic metabolism is essential for monitoring changes that may contribute to disease development. Here, we developed and validated an UPLC-MS/MS method to detect and quantify a panel of eight dopaminergic metabolites, including the oxidation product aminochrome. Our method was validated in differentiated SH-SY5Y cells and mouse brain tissue and was then employed in brain samples from humans and rats to ensure method reliability in different matrices. Finally, to prove the biological relevance of our method, we determined metabolic changes in an in vitro cellular model of dopamine oxidation/neuromelanin production and in human postmortem samples from Parkinson's disease patients. The current study provides a validated method to simultaneously monitor possible alterations in dopamine degradation and o-quinone production pathways that can be applied to in vitro and in vivo experimental models of neurological disorders and human brain samples.


Subject(s)
Dopamine , Tandem Mass Spectrometry , Animals , Brain , Chromatography, High Pressure Liquid , Chromatography, Liquid , Humans , Mice , Rats , Reproducibility of Results
3.
Nat Commun ; 10(1): 973, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30846695

ABSTRACT

In Parkinson's disease (PD) there is a selective degeneration of neuromelanin-containing neurons, especially substantia nigra dopaminergic neurons. In humans, neuromelanin accumulates with age, the latter being the main risk factor for PD. The contribution of neuromelanin to PD pathogenesis remains unknown because, unlike humans, common laboratory animals lack neuromelanin. Synthesis of peripheral melanins is mediated by tyrosinase, an enzyme also present at low levels in the brain. Here we report that overexpression of human tyrosinase in rat substantia nigra results in age-dependent production of human-like neuromelanin within nigral dopaminergic neurons, up to levels reached in elderly humans. In these animals, intracellular neuromelanin accumulation above a specific threshold is associated to an age-dependent PD phenotype, including hypokinesia, Lewy body-like formation and nigrostriatal neurodegeneration. Enhancing lysosomal proteostasis reduces intracellular neuromelanin and prevents neurodegeneration in tyrosinase-overexpressing animals. Our results suggest that intracellular neuromelanin levels may set the threshold for the initiation of PD.


Subject(s)
Brain/metabolism , Melanins/biosynthesis , Monophenol Monooxygenase/metabolism , Parkinson Disease/metabolism , Aging/metabolism , Animals , Disease Models, Animal , Dopaminergic Neurons/metabolism , Humans , Lewy Bodies/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Monophenol Monooxygenase/genetics , Parkinson Disease/genetics , Parkinson Disease/pathology , Parkinsonian Disorders/genetics , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substantia Nigra/metabolism , alpha-Synuclein/deficiency , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
4.
Cell Death Dis ; 9(11): 1122, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30405116

ABSTRACT

Mitochondria are the prime energy source in most eukaryotic cells, but these highly dynamic organelles are also involved in a multitude of cellular events. Disruption of mitochondrial homeostasis and the subsequent mitochondrial dysfunction plays a key role in the pathophysiology of Parkinson's disease (PD). Therefore, maintenance of mitochondrial integrity through different surveillance mechanisms is critical for neuronal survival. Here, we have studied the mitochondrial protein import system in in vitro and in vivo models of PD. Complex I inhibition, a characteristic pathological hallmark in PD, impaired mitochondrial protein import, which was associated with a downregulation of two key components of the system: translocase of the outer membrane 20 (TOM20) and translocase of the inner membrane 23 (TIM23), both in vitro and in vivo. In vitro, those changes were associated with OXPHOS protein downregulation, accumulation of aggregated proteins inside mitochondria and downregulation of mitochondrial chaperones. Most of these pathogenic changes, including mitochondrial dysfunction and dopaminergic cell death, were abrogated by TOM20 or TIM23 overexpression, in vitro. However, in vivo, while TOM20 overexpression exacerbated neurodegeneration in both substantia nigra (SN) pars compacta (pc) and striatum, overexpression of TIM23 partially protected dopaminergic neurons in the SNpc. These results highlight mitochondrial protein import dysfunction and the distinct role of two of their components in the pathogenesis of PD and suggest the need for future studies to further characterize mitochondrial protein import deficit in the context of PD.


Subject(s)
Electron Transport Complex I/genetics , Membrane Transport Proteins/genetics , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Parkinson Disease/genetics , Parkinsonian Disorders/genetics , Receptors, Cell Surface/genetics , Animals , Cell Line, Tumor , Corpus Striatum/metabolism , Corpus Striatum/pathology , Electron Transport Complex I/deficiency , Gene Expression Regulation , Humans , Male , Membrane Transport Proteins/deficiency , Mice , Mice, Inbred C57BL , Mitochondria/pathology , Mitochondrial Membrane Transport Proteins/deficiency , Mitochondrial Precursor Protein Import Complex Proteins , Neurons/metabolism , Neurons/pathology , Oxidative Phosphorylation , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Pars Compacta/metabolism , Pars Compacta/pathology , Protein Aggregates , Protein Transport , Receptors, Cell Surface/deficiency , Signal Transduction
5.
Mol Ther ; 26(6): 1552-1567, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29628303

ABSTRACT

The possible implication of transcription factor EB (TFEB) as a therapeutic target in Parkinson's disease has gained momentum since it was discovered that TFEB controls lysosomal biogenesis and autophagy and that its activation might counteract lysosomal impairment and protein aggregation. However, the majority of putative direct targets of TFEB described to date is linked to a range of biological processes that are not related to the lysosomal-autophagic system. Here, we assessed the effect of overexpressing TFEB with an adeno-associated viral vector in mouse substantia nigra dopaminergic neurons. We demonstrate that TFEB overexpression drives a previously unknown bona fide neurotrophic effect, giving rise to cell growth, higher tyrosine hydroxylase levels, and increased dopamine release in the striatum. TFEB overexpression induces the activation of the mitogen-activated protein kinase 1/3 (MAPK1/3) and AKT pro-survival pathways, phosphorylation of mTORC1 effectors 4E-binding protein 1 (4E-BP1) and S6 kinase B1 (S6K1), and increased protein synthesis. We show that TFEB overexpression prevents dopaminergic cell loss and counteracts atrophy and the associated protein synthesis decline in the MPTP mouse model of Parkinson's disease. Our results suggest that increasing TFEB activity might prevent neuronal death and restore neuronal function in Parkinson's disease and other neurodegenerative diseases through different mechanisms.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Parkinson Disease/metabolism , Parkinson Disease/therapy , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Disease Models, Animal , Dopamine/metabolism , Male , Mice , Mice, Inbred C57BL , Parkinson Disease/genetics , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
6.
Oncotarget ; 9(5): 5736-5751, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29464030

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is the most common and aggressive subtype of renal cancer. STAT3 pathway is altered in these tumors and p-STAT3 Ser727 is an independent prognostic factor for ccRCC. Protein kinase CK2 is altered in different types of tumors and overexpression of CK2α is considered predictive of bad prognosis and metastatic risk. CK2 subunits analyses in ccRCC samples showed increased CK2α/α' nuclear content in all cases, but decreased cytosolic CK2ß (CK2ßcyt) levels in the more advanced tumors. Stable downregulation of CK2ß in renal proximal tubular (HK-2) and clear cell adenocarcinoma (786-O) cells triggered changes in E-cadherin, vimentin and Snail1 protein levels indicative of epithelial-to-mesenchymal transition (EMT), and increased HIF-α. Moreover, CK2ß was required in order to observe STAT3 Ser727 phosphorylation in HK-2 but not in 786-O cells. We also observed that CK2ß improved the prognostic value of p-STAT3 Ser727, as CK2ßcyt>41 (median value) discriminates patients free of disease for a period of 10 years upon surgery, from those with CK2ßcyt<41, when p-STAT3 Ser727levels are low. We conclude that CK2ß down-regulation might represent a mechanism to support EMT and angiogenesis and that CK2ßcyt levels are instrumental to refine prognosis of ccRCC patients with low p-STAT3 Ser727 levels.

7.
Cancer Res ; 74(5): 1416-28, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24390735

ABSTRACT

Renal cell carcinoma (RCC), the third most prevalent urological cancer, claims more than 100,000 lives/year worldwide. The clear cell variant (ccRCC) is the most common and aggressive subtype of this disease. While commonly asymptomatic, more than 30% of ccRCC are diagnosed when already metastatic, resulting in a 95% mortality rate. Notably, nearly one-third of organ-confined cancers treated by nephrectomy develop metastasis during follow-up care. At present, diagnostic and prognostic biomarkers to screen, diagnose, and monitor renal cancers are clearly needed. The gene encoding the cell surface molecule HAVCR1/KIM-1 is a suggested susceptibility gene for ccRCC and ectodomain shedding of this molecule may be a predictive biomarker of tumor progression. Microarray analysis of 769-P ccRCC-derived cells where HAVCR/KIM-1 levels have been upregulated or silenced revealed relevant HAVCR/KIM-1-related targets, some of which were further analyzed in a cohort of 98 ccRCC patients with 100 month follow-up. We found that HAVCR/KIM-1 activates the IL-6/STAT-3/HIF-1A axis in ccRCC-derived cell lines, which depends on HAVCR/KIM-1 shedding. Moreover, we found that pSTAT-3 S727 levels represented an independent prognostic factor for ccRCC patients. Our results suggest that HAVCR/KIM-1 upregulation in tumors might represent a novel mechanism to activate tumor growth and angiogenesis and that pSTAT-3 S727 is an independent prognostic factor for ccRCC.


Subject(s)
Carcinoma, Renal Cell/genetics , Interleukin-6/genetics , Kidney Neoplasms/genetics , Membrane Glycoproteins/genetics , Receptors, Virus/genetics , STAT3 Transcription Factor/genetics , Signal Transduction/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/pathology , Cell Line , Cell Line, Tumor , Disease Progression , Gene Expression Regulation, Neoplastic/genetics , HEK293 Cells , Hepatitis A Virus Cellular Receptor 1 , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Interleukin-6/metabolism , Kidney Neoplasms/pathology , Membrane Glycoproteins/metabolism , Receptors, Virus/metabolism , STAT3 Transcription Factor/metabolism , Up-Regulation/genetics
8.
Eur J Cancer ; 49(8): 2034-47, 2013 May.
Article in English | MEDLINE | ID: mdl-23352434

ABSTRACT

AIM OF THE STUDY: To correlate hepatitis A virus cellular receptor (HAVCR)/kidney injury molecule-1 (KIM-1) expression in clear cell renal cell carcinoma (ccRCC) tumours with patient outcome and study the consequences of HAVCR/KIM-1 ectodomain shedding. METHODS: HAVCR/KIM-1 expression in ccRCC, oncocytomes, papillary carcinomas and unaffected tissue counterparts was evaluated. Minimal change disease and pre-clamping normal and ccRCC tissue biopsies were included. Tissue microarrays from 98 ccRCC tumours were analysed. Tumour registry data and patient outcome were retrospectivelly collected. Deletions in HAVCR/KIM-1 ectodomain and lentiviral infection of 786-O cells with HAVCR/KIM-1 mutated constructs to determine their subcellular distribution and invasive capacity were performed. RESULTS: HAVCR/KIM-1 was expressed in ccRCC, papillary tumours and in tubule cells of adjacent and distal unaffected counterparts of ccRCC tumours. The latest was not related to ischemic or tumour-related paracrine effects since pre-clamping normal biopsies were positive for HAVCR/KIM-1 and unaffected counterparts of papillary tumours were negative. HAVCR/KIM-1 analyses in patients and the invasive capacity of HAVCR/KIM-1 shedding mutants in cell lines demonstrated that: (i) relative low HAVCR/KIM-1 membrane levels correlate with activated shedding in ccRCC patients and mutant cell lines; (ii) augmented shedding directly correlates with higher invasiveness and tumour malignancy. CONCLUDING STATEMENTS: Constitutive expression of HAVCR/KIM-1 in kidney might constitute a susceptibility trait for ccRCC tumour development. Enhanced HAVCR/KIM-1 ectodomain shedding promotes invasive phenotype in vitro and more aggressive tumours in vivo.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/metabolism , Membrane Glycoproteins/metabolism , Receptors, Virus/metabolism , Adult , Aged , Aged, 80 and over , Binding Sites/genetics , Biomarkers, Tumor/genetics , Blotting, Western , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Disease Progression , Female , Genetic Predisposition to Disease/genetics , HEK293 Cells , Hepatitis A Virus Cellular Receptor 1 , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Kidney/metabolism , Kidney/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Male , Membrane Glycoproteins/genetics , Microscopy, Fluorescence , Middle Aged , Multivariate Analysis , Mutation , Prognosis , Receptors, Virus/genetics , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...